
OAR Documentation - User Guide

Authors: Capit Nicolas, Emeras Joseph
Address: Laboratoire d’Informatique de Grenoble Bat. ENSIMAG - antenne de

Montbonnot ZIRST 51, avenue Jean Kuntzmann 38330 MONTBONNOT
SAINT MARTIN

Contact: nicolas.capit@imag.fr, joseph.emeras@imag.fr
Authors: LIG laboratory
Organization:

LIG laboratory
Status: Stable
Copyright: licenced under the GNU GENERAL PUBLIC LICENSE
Dedication: For users.

Abstract: OAR is a resource manager (or batch scheduler) for large clusters. By it’s
functionnalities, it’s near of PBS, LSF, CCS and Condor. It’s suitable for
productive plateforms and research experiments.

BE CAREFULL : THIS DOCUMENTATION IS FOR OAR >= 2.3.0
PDF version : OAR-DOCUMENTATION-USER.pdf

1

mailto:nicolas.capit@imag.fr
mailto:joseph.emeras@imag.fr

Table of Contents

OAR capabilities 4

Description of the different commands 5
oarstat . 5
oarnodes . 6
oarsub . 6
oardel . 10
oarhold . 10
oarresume . 11

Desktop computing 11

Visualisation tools 11
Monika . 11
DrawOARGantt . 11

Mechanisms 12
How does an interactive oarsub work? . 12
Job launch . 12
CPUSET . 12
SSH connection key definition . 13
Suspend/resume . 13
Job deletion . 14
Checkpoint . 14
Scheduling . 14
Job dependencies . 14
User notification . 15
Accounting aggregator . 15
Dynamic nodes coupling features . 15
Timesharing . 16
Container jobs . 16
Besteffort jobs . 17
Cosystem jobs . 17
Deploy jobs . 17
Desktop computing . 18

FAQ - USER 18
Release policy . 18
How can I submit a moldable job? . 18
How can I submit a job with a non uniform description? 18

2

Can I perform a fix scheduled reservation and then launch several jobs in it? 19
How can a checkpointable job be resubmitted automatically? 19
How to submit a non disturbing job for other users? 19

OAR CHANGELOG 19
version 2.5.3: . 19
version 2.5.2: . 20
version 2.5.1: . 21
version 2.4.4: . 23
version 2.4.3: . 23
version 2.4.2: . 24
version 2.4.1: . 24
version 2.4.0: . 24
version 2.3.5: . 26
version 2.3.4: . 26
version 2.3.3: . 27
version 2.3.2: . 27
version 2.3.1: . 28
version 2.2.12: . 29
version 2.2.11: . 29
version 2.2.10: . 29
version 2.2.9: . 30
version 2.2.8: . 30
version 2.2.7: . 30
version 2.2.11: . 30
version 2.2.10: . 31
version 2.2.9: . 31
version 2.2.8: . 31
version 2.2.7: . 31
version 2.2.6: . 31
version 2.2.5: . 31
version 2.2.4: . 32
version 2.2.3: . 32
version 2.2.2: . 32
version 2.2.1: . 32
version 2.2: . 32
version 2.1.0: . 33
version 2.0.2: . 33
version 2.0.0: . 34

3

OAR capabilities

Oar is an opensource batch scheduler which provides a simple and flexible exploitation
of a cluster.

It manages resources of clusters as a traditional batch scheduler (as PBS / Torque /
LSF / SGE). In other words, it doesn’t execute your job on the resources but manages
them (reservation, acces granting) in order to allow you to connect these resources and
use them.

Its design is based on high level tools:

� relational database engine MySQL or PostgreSQL,

� scripting language Perl,

� confinement system mechanism cpuset,

� scalable exploiting tool Taktuk.

It is flexible enough to be suitable for production clusters and research experiments.
It currently manages over than 5000 nodes and has executed more than 5 million jobs.

OAR advantages:

� No specific daemon on nodes.

� No dependence on specific computing libraries like MPI. We support
all sort of parallel user applications.

� Upgrades are made on the servers, nothing to do on computing nodes.

� CPUSET (2.6 linux kernel) integration which restricts the jobs on as-
signed resources (also useful to clean completely a job, even parallel
jobs).

� All administration tasks are performed with the taktuk command (a
large scale remote execution deployment): http://taktuk.gforge.inria.fr/.

� Hierarchical resource requests (handle heterogeneous clusters).

� Gantt scheduling (so you can visualize the internal scheduler decisions).

� Full or partial time-sharing.

� Checkpoint/resubmit.

� Licences servers management support.

� Best effort jobs : if another job wants the same resources then it is
deleted automatically (useful to execute programs like SETI@home).

� Environment deployment support (Kadeploy): http://kadeploy.imag.fr/.

Other more common features:

� Batch and Interactive jobs.

� Admission rules.

� Walltime.

� Multi-schedulers support.

4

http://taktuk.gforge.inria.fr/
http://kadeploy.imag.fr/

� Multi-queues with priority.

� Backfilling.

� First-Fit Scheduler.

� Reservation.

� Support of moldable tasks.

� Check compute nodes.

� Epilogue/Prologue scripts.

� Support of dynamic nodes.

� Logging/Accounting.

� Suspend/resume jobs.

Description of the different commands

All user commands are installed on cluster login nodes. So you must connect to one of
these computers first.

oarstat

This command prints jobs in execution mode on the terminal.
Options

-j, --job show informations only for the specified job (even if it is finished)

-f, --full show full informations

-s, --state show only the state of a job (optimized query)

-u, --user show informations for this user only

-g, --gantt show job informations between two date-times

-e, --events show job events

-p, --properties show job properties

--accounting show accounting informations between two dates

--sql restricts display by applying the SQL where clause

on the table jobs (ex: "project = ’p1’")

-D, --dumper print result in DUMPER format

-X, --xml print result in XML format

-Y, --yaml print result in YAML format

--backward-compatible OAR 1.* version like display

-V, --version print OAR version number

-h, --help show this help screen

Examples

5

oarstat

oarstat -j 42 -f

oarstat --sql "project = ’p1’"

oarstat -s -j 42

oarnodes

This command prints informations about cluster resources (state, which jobs on which
resources, resource properties, ...).

Options

-a : shows all resources with their properties

-r : show only properties of a resource

-s : shows only resource states

-l : shows only resource list

--sql "sql where" : Display resources which matches this sql where clause

-D : formats outputs in Perl Dumper

-X : formats outputs in XML

-Y : formats outputs in YAML

Examples

oarnodes

oarnodes -s

oarnodes --sql "state = ’Suspected’"

oarsub

The user can submit a job with this command. So, what is a job in our context?

A job is defined by needed resources and a script/program to run. So, the
user must specify how many resources and what kind of them are needed by
his application. Thus, OAR system will give him or not what he wants and
will control the execution. When a job is launched, OAR executes user program
only on the first reservation node. So this program can access some environment
variables to know its environment:

$OAR_NODEFILE contains the name of a file which lists

all reserved nodes for this job

$OAR_JOB_ID contains the OAR job identificator

$OAR_RESOURCE_PROPERTIES_FILE contains the name of a file which lists

all resources and their properties

$OAR_JOB_NAME name of the job given by the "-n" option

$OAR_PROJECT_NAME job project name

Options:

6

-I, --interactive Request an interactive job. Open a login shell

on the first node of the reservation instead of

running a script.

-C, --connect=<job id> Connect to a running job

-l, --resource=<list> Set the requested resources for the job.

The different parameters are resource properties

registered in OAR database, and ‘walltime’ which

specifies the duration before the job must be

automatically terminated if still running.

Walltime format is [hour:mn:sec|hour:mn|hour].

Ex: nodes=4/cpu=1,walltime=2:00:00

-S, --scanscript Batch mode only: asks oarsub to scan the given

script for OAR directives (#OAR -l ...)

-q, --queue=<queue> Set the queue to submit the job to

-p, --property="<list>" Add constraints to properties for the job.

(format is a WHERE clause from the SQL syntax)

-r, --reservation=<date> Request a job start time reservation,

instead of a submission. The date format is

"YYYY-MM-DD HH:MM:SS".

--checkpoint=<delay> Enable the checkpointing for the job. A signal

is sent DELAY seconds before the walltime on

the first processus of the job

--signal=<#sig> Specify the signal to use when checkpointing

Use signal numbers, default is 12 (SIGUSR2)

-t, --type=<type> Specify a specific type (deploy, besteffort,

cosystem, checkpoint, timesharing)

-d, --directory=<dir> Specify the directory where OAR will launch the

command (default is current directory)

--project=<txt> Specify a name of a project the job belongs to

-n, --name=<txt> Specify an arbitrary name for the job

-a, --anterior=<job id> Anterior job that must be terminated to start

this new one

--notify=<txt> Specify a notification method

(mail or command to execute). Ex:

--notify "mail:name\@domain.com"

--notify "exec:/path/to/script args"

--resubmit=<job id> Resubmit the given job as a new one

-k, --use-job-key Activate the job-key mechanism.

-i, --import-job-key-from-file=<file>

Import the job-key to use from a files instead

of generating a new one.

--import-job-key-inline=<txt>

Import the job-key to use inline instead of

7

generating a new one.

-e --export-job-key-to-file=<file>

Export the job key to a file. Warning: the

file will be overwritten if it already exists.

(the %jobid% pattern is automatically replaced)

-O --stdout=<file> Specify the file that will store the standart

output stream of the job.

(the %jobid% pattern is automatically replaced)

-E --stderr=<file> Specify the file that will store the standart

error stream of the job.

(the %jobid% pattern is automatically replaced)

--hold Set the job state into Hold instead of Waiting,

so that it is not scheduled (you must run

"oarresume" to turn it into the Waiting state)

-D, --dumper Print result in DUMPER format

-X, --xml Print result in XML format

-Y, --yaml Print result in YAML format

-h, --help Print this help message

-V, --version Print OAR version number

Wanted resources have to be described in a hierarchical manner using the “-l” syntax
option.

Moreover it is possible to give a specification that must be matched on properties.
So the long and complete syntax is of the form:

"{ sql1 }/prop1=1/prop2=3+{sql2}/prop3=2/prop4=1/prop5=1+...,walltime=1:00:00"

where:
� sql1 : SQL WHERE clause on the table of resources that filters resource

names used in the hierarchical description

� prop1 : first type of resources

� prop2 : second type of resources

� + : add another resource hierarchy to the previous one

� sql2 : SQL WHERE clause to apply on the second hierarchy request

� ...

So we want to reserve 3 resources with the same value of the type prop2 and with
the same property prop1 and these resources must fit sql1. To that possible resources we
want to add 2 others which fit sql2 and the hierarchy /prop3=2/prop4=1/prop5=1.

8

Example of a resource hierarchy and 2 different oarsub commands

hierarchical resources.svg
Examples

oarsub -l /nodes=4 test.sh

(the “test.sh” script will be run on 4 entire nodes in the default queue with the default
walltime)

oarsub --stdout=’test12.%jobid%.stdout’ --stderr=’test12.%jobid%.stderr’ -l

/nodes=4 test.sh

...

OAR_JOB_ID=702

...

(same example than above but here the standard output of “test.sh” will be written
in the file “test12.702.stdout” and the standard error in “test12.702.stderr”)

oarsub -q default -l /nodes=10/cpu=3,walltime=2:15:00 \

-p "switch = ’sw1’" /home/users/toto/prog

(the “/home/users/toto/prog” script will be run on 10 nodes with 3 cpus (so a total of
30 cpus) in the default queue with a walltime of 2:15:00. Moreover “-p” option restricts
resources only on the switch ’sw1’)

9

file:../schemas/hierarchical_resources.png
file:../schemas/hierarchical_resources.svg

oarsub -r "2009-04-27 11:00:00" -l /nodes=12/cpu=2

(a reservation will begin at “2009-04-27 11:00:00” on 12 nodes with 2 cpus on each
one)

oarsub -C 42

(connects to the job 42 on the first node and set all OAR environment variables)

oarsub -p "not host like ’nodename.%’"

(To exclude a node from the request)

oarsub -I

(gives a shell on a resource)

oardel

This command is used to delete or checkpoint job(s). They are designed by their identi-
fier.

Option

--sql : delete/checkpoint jobs which respond to the SQL where clause

on the table jobs (ex: "project = ’p1’")

-c job_id : send checkpoint signal to the job (signal was

definedwith "--signal" option in oarsub)

Examples

oardel 14 42

(delete jobs 14 and 42)

oardel -c 42

(send checkpoint signal to the job 42)

oarhold

This command is used to remove a job from the scheduling queue if it is in the “Waiting”
state.

Moreover if its state is “Running” oarhold can suspend the execution and enable other
jobs to use its resources. In that way, a SIGINT signal is sent to every processes.

Options

--sql : hold jobs which respond to the SQL where clause on the table

jobs (ex: "project = ’p1’")

-r : Manage not only Waiting jobs but also Running one

(can suspend the job)

10

oarresume

This command resumes jobs in the states Hold or Suspended
Option

--sql : resume jobs which respond to the SQL where clause on the table

jobs (ex: "project = ’p1’")

Desktop computing

If you want to compute jobs on nodes without SSH connections then this feature is for
you.

On the nodes you have to run “oar-agent.pl”. This script polls the OAR server via a
CGI HTTP script.

Usage examples:
� if you want to run a program that you know is installed on nodes:

oarsub -t desktop_computing /path/to/program

Then /path/to/program is run and the files created in the oar-agent.pl
running directory is retrieved where oarsub was launched.

� if you want to copy a working environment and then launch the program:

oarsub -t desktop_computing -s . ./script.sh

The content of “.” is transfred to the node, “./script.sh” is run and every-
thing will go back.

Visualisation tools

Monika

This is a web cgi normally installed on the cluster frontal. This tool connects to the DB,
gets relevant information then format data in a html page.

Thus you can have a global view of cluster state and where your jobs are running.

DrawOARGantt

This is also a web cgi. It creates a Gantt chart which shows job repartition on nodes in
the time. It is very useful to see cluster occupation in the past and to know when a job
will be launched in the future.

11

Mechanisms

How does an interactive oarsub work?

Interactive oarsub decomposition

interactive oarsub scheme.svg

Job launch

For PASSIVE jobs, the mechanism is similar to the INTERACTIVE one, except for the
shell launched from the frontal node.

The job is finished when the user command ends. Then oarexec return its exit value
(what errors occured) on the Almighty via the SERVER PORT if DETACH JOB FROM SERVER
was set to 1 otherwise it returns directly.

CPUSET

The cpuset name is effectively created on each nodes and is composed as “user jobid”.
OAR system steps:

1. Before each job, the Runner initialize the CPUSET (see CPUSET
definition) with OPENSSH CMD and an efficient launching tool :
Taktuk. If it is not installed and configured (TAKTUK CMD) then
OAR uses an internal launching tool less optimized. The processors

12

file:../schemas/interactive_oarsub_scheme.png
file:../schemas/interactive_oarsub_scheme.svg
http://taktuk.gforge.inria.fr/

assigned to this cpuset are taken from the defined database field
by JOB RESOURCE MANAGER PROPERTY DB FIELD in the
table resources.

2. After each job, OAR deletes all processes stored in the associated
CPUSET. Thus all nodes are clean after a OAR job.

If you don’t want to use this feature, you can, but nothing will warranty that every
user processes will be killed after the end of a job.

If you want you can implement your own cpuset management. This is done by editing
3 files (see also CPUSET installation):

� cpuset manager.pl : this script creates the cpuset on each nodes and
also delete it at the end of the job. For more informations, you have to
look at this script (there are several comments).

� oarsh : (OARSH) this script is used to replace the standard “ssh” com-
mand. It gets the cpuset name where it is running and transfer this
information via “ssh” and the “SendEnv” option. In this file, you have
to change the “get current cpuset” function.

� oarsh shell : (OARSH SHELL) this script is the shell of the oar user on
each nodes. It gets environment variables and look at if there is a cpuset
name. So if there is one it assigns the current process and its father to
this cpusetname. So all further user processes will remind in the cpuset.
In this file you just have to change the“add process to cpuset”function.

SSH connection key definition

This function is performed by oarsub with the --ssh private key and --ssh public key
options.

It enables the user to define a ssh key pair to connect on their nodes. So oarsh can be
used on nodes of different clusters to connect each others if the same ssh keys are used
with each oarsub.

So a grid reservation (“-r” option of oarsub on each OAR batch scheduler of each
wanted clusters) can be done with this functionality.

Example:

ssh-keygen -f oar_key

oarsub --ssh_private_key "$(cat oar_key)" --ssh_public_key "$(cat oar_key.pub)" ./script.sh

Suspend/resume

Jobs can be suspended with the command oarhold (send a“SIGSTOP”on every processes
on every nodes) to allow other jobs to be executed.

“Suspended” jobs can be resumed with the command oarresume (send a “SIGSTOP”
on every suspended processes on every nodes). They will pass into “Running” when
assigned resources will be free.

13

IMPORTANT: This feature is available only if CPUSET is configured.
You can specify 2 scripts if you have to perform any actions just after (JUST AFTER SUSPEND EXEC FILE)

suspend and just before resume (JUST BEFORE RESUME EXEC FILE).
Moreover you can perform other actions (than send signals to processes) if you want:

just edit the “suspend resume manager.pl” file.

Job deletion

Leon tries to connect to OAR Perl script running on the first job node (find it thanks
to the file /tmp/oar/pid of oarexec for jobId id) and sends a “SIGTERM” signal. Then
the script catch it and normally end the job (kill processes that it has launched).

If this method didn’t succeed then Leon will flush the OAR database for the job and
nodes will be “Suspected” by NodeChangeState.

If your job is check pointed and is of the type idempotent (oarsub “-t” option) and its
exit code is equal to 99 then another job is automatically created and scheduled with
same behaviours.

Checkpoint

The checkpoint is just a signal sent to the program specified with the oarsub command.
If the user uses “--checkpoint” option then Sarko will ask the OAR Perl script running

on the first node to send the signal to the process (SIGUSR2 or the one specified with
“--signal”).

You can also use oardel command to send the signal.

Scheduling

General steps used to schedule a job:

1. All previous scheduled jobs are stored in a Gantt data structure.

2. All resources that match property constraints of the job(“-p” option
and indication in the “{...}” from the “-l” option of the oarsub) are
stored in a tree data structure according to the hierarchy given with
the “-l” option.

3. Then this tree is given to the Gantt library to find the first hole
where the job can be launched.

4. The scheduler stores its decision into the database in the gantt jobs predictions
and gantt jobs resources tables.

See User section from the FAQ for more examples and features.

Job dependencies

A job dependency is a situation where a job needs the ending of another job to start.
OAR deals with job dependency problems by refusing to schedule dependant jobs if their

14

required job is in Terminated state and have an exit code != 0 (an error occured). If
the required job is resubmited, its jobId is no longer the same and OAR updates the
database and sets the job id required field to this new jobId for the dependant job.

User notification

This section explains how the “--notify” oarsub option is handled by OAR:

� The user wants to receive an email:
The syntax is “mail:name@domain.com”. Mail section in the Con-
figuration file must be present otherwise the mail cannot be sent.
The subject of the mail is of the form:
OAR [TAG]: job id (job name) on OAR server hostname

� The user wants to launch a script:
The syntax is “exec:/path/to/script args”. OAR server will connect
(using OPENSSH CMD) on the node where the oarsub command
was invoked and then launches the script with the following argu-
ments : job id, job name, TAG, comments.

TAG can be:
� RUNNING : when the job is launched

� END : when the job is finished normally

� ERROR : when the job is finished abnormally

� INFO : used when oardel is called on the job

� SUSPENDED : when the job is suspended

� RESUMING : when the job is resumed

Accounting aggregator

In the Configuration file you can set the ACCOUNTING WINDOW parameter. Thus
the command oaraccounting will split the time with this amount and feed the table
accounting.

So this is very easily and faster to get usage statistics of the cluster. We can see that
like a “data warehousing” information extraction method.

Dynamic nodes coupling features

We are working with the Icatis company on clusters composed by Intranet computers.
These nodes can be switch in computing mode only at specific times. So we have imple-
mented a functionality that can request to power on some hardware if they can be in
the cluster.

We are using the field available upto from the table resources to know when a node
will be inaccessible in the cluster mode (easily settable with oarnodesetting command).

15

http://www.icatis.com/

So when the OAR scheduler wants some potential available computers to launch the jobs
then it executes the command SCHEDULER NODE MANAGER WAKE UP CMD.

Moreover if a node didn’t execute a job for SCHEDULER NODE MANAGER IDLE TIME
seconds and no job is scheduled on it before SCHEDULER NODE MANAGER SLEEP TIME
seconds then OAR will launch the command SCHEDULER NODE MANAGER SLEEP CMD.

Timesharing

It is possible to share the slot time of a job with other ones. To perform this feature you
have to specify the type timesharing when you use oarsub.

You have 4 different ways to share your slot:

1. timesharing=*,* : This is the default behavior if nothing but time-
sharing is specified. It indicates that the job can be shared with all
users and every job names.

2. timesharing=user,* : This indicates that the job can be shared only
with the same user and every job names.

3. timesharing=*,job name : This indicates that the job can be shared
with all users but only one with the same name.

4. timesharing=user,job name : This indicates that the job can be
shared only with the same user and one with the same job name.

See User section from the FAQ for more examples and features.

Container jobs

With this functionality it is possible to execute jobs within another one. So it is like a
sub-scheduling mechanism.

First a job of the type container must be submitted, for example:

oarsub -I -t container -l nodes=10,walltime=2:10:00

...

OAR_JOB_ID=42

...

Then it is possible to use the inner type to schedule the new jobs within the previously
created container job:

oarsub -I -t inner=42 -l nodes=7

oarsub -I -t inner=42 -l nodes=1

oarsub -I -t inner=42 -l nodes=10

Notes:

� In the case:

oarsub -I -t inner=42 -l nodes=11

16

This job will never be scheduled because the container job “42” reserved
only 10 nodes.

� “-t container” is handled by every kind of jobs (passive, interactive and
reservations). But “-t inner=...” cannot be used with a reservation.

Besteffort jobs

Besteffort jobs are scheduled in the besteffort queue. Their particularity is that they are
deleted if another not besteffort job wants resources where they are running.

For example you can use this feature to maximize the use of your cluster with multi-
parametric jobs. This what it is done by the CIGRI project.

When you submit a job you have to use “-t besteffort” option of oarsub to specify that
this is a besteffort job.

Important : a besteffort job cannot be a reservation.
If your job is of the type besteffort and idempotent (oarsub “-t” option) and killed by

the OAR scheduler then another job is automatically created and scheduled with same
behaviours.

Cosystem jobs

This feature enables to reserve some resources without launching any program on cor-
responding nodes. Thus nothing is done by OAR on computing nodes when a job is
starting except on the COSYSTEM HOSTNAME defined in the configuration file.

This is useful with an other launching system that will declare its time slot in OAR.
So yo can have two different batch scheduler.

When you submit a job you have to use “-t cosystem” option of oarsub to specify that
this is a cosystem job.

These jobs are stopped by the oardel command or when they reach their walltime
or their command has finished. They also use the node COSYSTEM HOSTNAME to
launch the specified program or shell.

Deploy jobs

This feature is useful when you want to enable the users to reinstall their reserved
nodes. So the OAR jobs will not log on the first computer of the reservation but on the
DEPLOY HOSTNAME.

So prologue and epilogue scripts are executed on DEPLOY HOSTNAME and if the
user wants to launch a script it is also executed on DEPLOY HOSTNAME.

OAR does nothing on computing nodes because they normally will be rebooted to
install a new system image.

This feature is strongly used in the Grid5000 project with Kadeploy tools.
When you submit a job you have to use “-t deploy” option of oarsub to specify that

this is a deploy job.

17

http://cigri.ujf-grenoble.fr
https://www.grid5000.fr/
http://ka-tools.imag.fr/

Desktop computing

If you cannot contact the computers via SSH you can install the “desktop computing”
OAR mode. This kind of installation is based on two programs:

� oar-cgi : this is a web CGI used by the nodes to communicate with the
OAR server via a HTTP server on the OAR server node.

� oar-agent.pl : This program asks periodically the server web CGI to
know what it has to do.

This method replaces the SSH command. Computers which want to register them into
OAR just has to be able to contact OAR HTTP server.

In this situation we don’t have a NFS file system to share the same directories over all
nodes so we have to use a stagein/stageout solution. In this case you can use the oarsub
option “stagein” to migrate your data.

FAQ - USER

Release policy

Since the version 2.2, release numbers are divided into 3 parts:
� The first represents the design and the implementation used.

� The second represents a set of OAR functionalities.

� The third is incremented after bug fixes.

How can I submit a moldable job?

You just have to use several “-l” oarsub option(one for each moldable description). By
default the OAR scheduler will launch the moldable job which will end first.

So you can see some free resources but the scheduler can decide to start your job later
because they will have more free resources and the job walltime will be smaller.

How can I submit a job with a non uniform description?

Example:

oarsub -I -l ’{switch = "sw1" or switch = "sw5"}/switch=1+/node=1’

This example asks OAR to reserve all resources from the switch sw1 or the switch sw2
and a node on another switch.

You can see the “+” syntax as a sub-reservation directive.

18

Can I perform a fix scheduled reservation and then launch several jobs in it?

Yes. You have to use the OAR scheduler “timesharing” feature. To use it, the reservation
and your further jobs must be of the type timesharing (only for you).

Example:

1. Make your reservation:

oarsub -r "2006-09-12 8:00:00" -l /switch=1 -t ’timesharing=user,*’

This command asks all resources from one switch at the given date
for the default walltime. It also specifies that this job can be shared
with himself and without a constraint on the job name.

2. Once your reservation has begun then you can launch:

oarsub -I -l /node=2,walltime=0:50:00 -p ’switch = "nom_du_switch_schedule"’\

-t ’timesharing=user,*’

So this job will be scheduled on nodes assigned from the previous
reservation.

The “timesharing” oarsub command possibilities are enumerated in Timesharing.

How can a checkpointable job be resubmitted automatically?

You have to specify that your job is idempotent and exit from your script with the exit
code 99. So, after a successful checkpoint, if the job is resubmitted then all will go right
and there will have no problem (like file creation, deletion, ...).

Example:

oarsub --checkpoint 600 --signal 2 -t idempotent /path/to/prog

So this job will send a signal SIGINT (see man kill to know signal numbers) 10 minutes
before the walltime ends. Then if everything goes well and the exit code is 99 it will be
resubmitted.

How to submit a non disturbing job for other users?

You can use the besteffort job type. Thus your job will be launched only if there is a
hole and will be deleted if another job wants its resources.

Example:

oarsub -t besteffort /path/to/prog

OAR CHANGELOG

version 2.5.3:

� Add the “Name” field on the main Monika page. This is easier for the
users to find there jobs.

19

� Add MAX CONCURRENT JOB TERMINATIONS into the oar.conf
ofthe master. This limits the number of concurrent processes launched
by the Almighty when the the jobs finish.

� Bug fix in ssh key feature in oarsub.

� Added --compact, -c option to oarstat (compact view or array jobs)

� Improvements of the API: media upload from html forms, listing of files,
security fixes, add of new configuration options, listing of the scheduled
nodes into jobs, fixed bad reinitialization of the limit parameter... See
OAR-DOCUMENTATION-API-USER for more informations.

version 2.5.2:

� Bugfix: /var/lib/oar/.bash oar was empty due to an error in the com-
mon setup script.

� Bugfix: the PINGCHECKER COMMAND in oar.conf depends now on
%%OARDIR%%.

� Bug #13939: the job resource manager.pl and job resource manager cgroups.pl
now deletes the user files in /tmp, /var/tmp and /dev/shm at the
end of the jobs.

� Bugfix: in oardodo.c, the preprocessed variables was not defined cor-
reclty.

� Finaud: fix race condition when there was a PINGCHECKER error
jsut before another problem. The node became Alive again when the
PINGCHECKER said OK BUT there was another error to resolve.

� Bugfix: The feature CHECK NODES WITH RUNNING JOB=yes never
worked before.

� Speedup monika (X5).

� Monika: Add the conf max cores per line to have several lines if the
number of cores are too big.

� Minor changes into API:
– added cmd output into POST /jobs.

� API: Added GET /select all?query=<query> (read only mode).

� Add the field “array index” into the jobs table. So that resubmit a job
from an array will have the right array index anvironment variable.

� oarstat: order the output by job id.

� Speedup oarnodes.

� Fix a spelling error in the oaradmin manpage.

� Bugfix #14122 : the oar-node init.d script wasn’t executing start oar node/stop oar node
during the ’restart’ action.

� Allow the dash character into the --notify “exec:...” oarsub option.

� Remove some old stuffs from the tarball:

20

– visualization interfaces/{tgoar,accounting,poar};

– scheduler/moldable;

– pbs-oar-lib.

� Fix some licence issues.

version 2.5.1:

� Sources directories reorganized

� New “Phoenix” tool to try to reboot automatically broken nodes (to
setup into /etc/oar/oar phoenix.pl)

� New (experimental!) scheduler written in Ocaml

� Cpusets are activated by default

� Bugfix #11065: oar resource init fix (add a space)

� Bug 10999: memory leak into Hulot when used with postgresql. The
leak has been minimized, but it is still there (DBD::Pg bug)

� Almighty cleans ipcs used by oar on exit

� Bugfix #10641 and #10999 : Hulot is automatically and periodically
restarted

� Feature request #10565: add the possibility to check the aliveness of
the nodes of a job at the end of this one (pingchecker)

� REST API heavily updated: new data structures with paginated results,
desktop computing functions, rspec tests, oaradmin resources manage-
ment, admission rules edition, relative/absolutes uris fixed

� New ruby desktop computing agent using REST API (experimental)

� Experimental testsuite

� Poar: web portal using the REST API (experimental)

� Oaradmin YAML export support for resources creation (for the REST
API)

� Bugfix #10567: enabling to bypass window mechanism of hulot.

� Bugfix #10568: Wake up timeout changing with the number of nodes

� Add in oar.conf the tag “RUNNER SLIDING WINDOW SIZE”: it al-
lows the runner to use a sliding window to launch the bipbip processes
if “DETACH JOB FROM SERVER=1”. This feature avoids the over-
load of the server if plenty of jobs have to be launched at the same
time.

� Fix problem when deleting a job in the Suspended state (oarexec was
stopped by a SIGSTOP so it was not able to handle the delete opera-
tion)

� Make the USER SIGNAL feature of oardel multi job independant and
remove the temporary file at the end of the job

21

� Monika: display if the job is of timesharing type or not
add in the job listing the initial request (is there a reason to not
display it?)

� IoLib: update scheduler priority resources property for timesharing jobs.
So the scheduler will be able to avoid to launch every timesharing
jobs on the same resources (they can be dispatched)

� OAREXEC: unmask SIGHUP and SIGPIPE for user script

� node change state: do not Suspect the first node of a job which was
EXTERMINATED by Leon if the cpuset feature is configured (let do
the job by the cpuset)

� OAREXEC: ESRF detected that sometime oarexec think that he noti-
fied the Almighty with it exit code but nothing was seen on the server.
So try to resend the exit code until oarexec is killed.

� oar Tools: add in notify almighty a check on the print and on the close
of the socket connected to Almighty.

� oaraccounting: --sql is now possible into a “oarstat --accounting” query

� Add more logs to the command “oarnodes -e host” when a node turns
into Suspected

� Execute user commands with /proc/self/oom adj to 15. So the first
processes that will be killed when there is no more memory available
is the user ones. Hence the system will remain up and running and the
user job will finished. Drawback: this file can be changed manually by
the user so if someone knows a method to do the same thing but only
managed by root, we take???

� Bugfix API: quotes where badly escaped into job submission (Ugo.Meda@insa-
rennes.fr)

� Add the possibility to automatically resubmit idempotent job which
ends with an exit code of 99: oarsub -t idempotent “sleep 5; exit 99”

� Bugfix API: Some informations where missing into jobs/details, espe-
cially the scheduled resources.

� API: added support of“param file”value for array job submissions. This
value is a string representing the content of a parameters file. Sample
submission:

{"resource":"/cpu=1", "command":"sleep", "param_file":"60\n90\n30"}

This submits 3 sleep jobs with differents sleep values.

� Remove any reference to gridlibs and gridapi as these components are
obselete

� Add stdout and stderr files of each job in oarstat output.

� API now supports fastcgi (big performance raise!)

� Add “-f” option to oarnodesetting to read hostnames from a file.

� API can get/upload files (GET or POST /media/<file path>)

22

mailto:Ugo.Meda@insa-rennes.fr
mailto:Ugo.Meda@insa-rennes.fr

� Make “X11 forwarding” working even if the user XAUTHORITY envi-
ronment variable does not contain ˜/.Xauthority (GDM issue).

� Add job resource manager cgroups which handles cpuset + other cgroup
features like network packet tagging, IO disk shares, ...

� Bugfix #13351: now oar psql db init is executed with root privileges

� Bugfix #13434: reservation were not handled correctly with the energy
saving feature

� Add cgroups FREEZER feature to the suspend/resume script (bet-
ter than kill SIGSTOP/SIGCONT). This is doable thanks to the new
job resource manager cgroups.

� Implement a new script ’oar-database’ to manage the oar database.
oar mysql init & oar psql init are dropped.

� Huge code reorganisation to allow a better packaging and system inte-
gration

� Drop the oarsub/oarstat 2.3 version that was kept for compatiblity
issues during the 2.4.x branch.

� By default the oar scheduler is now ’oar sched gantt with timesharing and fairsharing’
and the following values has been set in oar.conf: SCHEDULER TIMEOUT
to 30, SCHEDULER NB PROCESSES to 4 and SCHEDULER FAIRSHARING MAX JOB PER USER
to 30

� Add a limitation on the number of concurrent bipbip processes on the
server (for detached jobs).

� Add IPC cleaning to the job resource manager* when there is no other
job of the same user on the nodes.

� make better scheduling behaviour for dependency jobs

� API: added missing stop time into /jobs/details

version 2.4.4:

� oar resource init: bad awk delimiter. There’s a space and if the property
is the first one then there is not a ’,’.

� job suspend: oardo does not exist anymore (long long time ago). Replace
it with oardodo.

� oarsub: when an admission rule died micheline returns an integer and
not an array ref. Now oarsub ends nicely.

� Monika: add a link on each jobid on the node display area.

� sshd config: with nodes with a lot of core, 10 // connections could be
too few

version 2.4.3:

� Hulot module now has customizable keepalive feature

23

� Added a hook to launch a healing command when nodes are suspected
(activate the SUSPECTED HEALING EXEC FILE variable)

� Bugfix #9995: oaraccouting script doesn’t freeze anymore when db is
unreachable.

� Bugfix #9990: prevent from inserting jobs with invalid username (like
an empty username)

� Oarnodecheck improvements: node is not checked if a job is already
running

� New oaradmin option: --auto-offset

� Feature request #10565: add the possibility to check the aliveness of
the nodes of a job at the end of this one (pingchecker)

version 2.4.2:

� New “Hulot” module for intelligent and configurable energy saving

� Bug #9906: fix bad optimization in the gantt lib (so bad scheduling

version 2.4.1:

� Bug #9038: Security flaw in oarsub --notify option

� Bug #9601: Cosystem jobs are no more killed when a resource is set to
Absent

� Fixed some packaging bugs

� API bug fixes in job submission parsing

� Added standby info into oarnodes -s and available upto info into /re-
sources uri of the API

� Bug Grid’5000 #2687 Fix possible crashes of the scheduler.

� Bug fix: with MySQL DB Finaud suspected resources which are not of
the “default” type.

� Signed debian packages (install oar-keyring package)

version 2.4.0:

� Bug #8791: added CHECK NODES WITH RUNNING JOB=no to
prevent from checking occupied nodes

� Fix bug in oarnodesetting command generated by oar resources init
(detect resources)

� Added a --state option to oarstat to only get the status of specified jobs
(optimized query, to allow scripting)

� Added a REST API for OAR and OARGRID

� Added JSON support into oarnodes, oarstat and oarsub

� New Makefile adapted to build packages as non-root user

24

� add the command “oar resources init” to easily detect and initialize the
whole resources of a cluster.

� “oaradmin version” : now retrieve the most recent database schema
number

� Fix rights on the “schema” table in postgresql.

� Bug #7509: fix bug in add micheline subjob for array jobs + jobtypes

� Ctrl-C was not working anymore in oarsub. It seems that the signal
handler does not handle the previous syntax ($SIG = ’qdel’)

� Fix bug in oarsh with the “-l” option

� Bug #7487: bad initialisation of the gnatt for the container jobs.

� Scheduler: move the“delete unnecessary subtrees”directly into“find first hole”.
Thus this is possible to query a job like:

oarsub -I -l nodes=1/core=1+nodes=4/core=2

(no hard separation between each group)

For the same behaviour as before, you can query:
oarsub -I -l {prop=1}/nodes=1/core=1+{prop=2}/nodes=4/core=2

� Bug #7634: test if the resource property value is effectively defined
otherwise print a ’’

� Optional script to take into account cpu/core topology of the nodes at
boot time (to activate inside oarnodesetting ssh)

� Bug #7174: Cleaned default PATH from “./” into oardodo

� Bug #7674: remove the computation of the scheduler priority field for
besteffort jobs from the asynchronous OAR part. Now the value is set
when the jobs are turned into toLaunch state and in Error/Terminated.

� Bug #7691: add --array and --array-param-file options parsing into the
submitted script. Fix also some parsing errors.

� Bug #7962: enable resource property “cm availability” to be manipu-
lated by the oarnodesetting command

� Added the (standby) information to a node state in oarnodes when it’s
state
is Absent and cm availability != 0

� Changed the name of cm availability to available upto which is more
relevant

� add a --maintenance option to oarnodesetting that sets the state of a
resource to Absent and its available upto to 0 if maintenance is on and
resets previous values if maintenance is off.

� added a --signal option to oardel that allow a user to send a signal to
one of his jobs

� added a name field in the schema table that will refer to the OAR
version name

� added a table containing scheduler name, script and description

25

� Bug #8559: Almighty: Moved OAREXEC XXXX management code
out of the queue for immediate action, to prevent potential problems
in case of scheduler timeouts.

� oarnodes, oarstat and the REST API are no more making retry connec-
tions to the database in case of failure, but exit with an error instead.
The retry behavior is left for daemons.

� improved packaging (try to install files in more standard places)

� improved init script for Almighty (into deb and rpm packages)

� fixed performance issue on oarstat (array id index missing)

� fixed performance issue (job id index missing in event log table)

� fixed a performance issue at job submission (optimized a query and
added an index on challenges table) decisions).

version 2.3.5:

� Bug #8139: Drawgantt nil error (Add condition to test the presence of
nil value in resources table.)

� Bug #8416: When a the automatic halt/wakeup feature is enabled then
there was a problem to determine idle nodes.

� Debug a mis-initialization of the Gantt with running jobs in the metasched-
uler (concurrency access to PG database)

version 2.3.4:

� add the command “oar resources init” to easily detect and initialize the
whole resources of a cluster.

� “oaradmin version” : now retrieve the most recent database schema
number

� Fix rights on the “schema” table in postgresql.

� Bug #7509: fix bug in add micheline subjob for array jobs + jobtypes

� Ctrl-C was not working anymore in oarsub. It seems that the signal
handler does not handle the previous syntax ($SIG = ’qdel’)

� Bug #7487: bad initialisation of the gnatt for the container jobs.

� Fix bug in oarsh with the “-l” option

� Bug #7634: test if the resource property value is effectively defined
otherwise print a ’’

� Bug #7674: remove the computation of the scheduler priority field for
besteffort jobs from the asynchronous OAR part. Now the value is set
when the jobs are turned into toLaunch state and in Error/Terminated.

� Bug #7691: add --array and --array-param-file options parsing into the
submitted script. Fix also some parsing errors.

� Bug #7962: enable resource property “cm availability” to be manipu-
lated by the oarnodesetting command

26

version 2.3.3:

� Fix default admission rules: case unsensitive check for properties used
in oarsub

� Add new oaradmin subcommand : oaradmin conf. Useful to edit conf
files and keep changes in a Subversion repository.

� Kill correctly each taktuk command children in case of a timeout.

� New feature: array jobs (option --array) (on oarsub, oarstat oardel,
oarhold and oarresume) and file-based parametric array jobs (oarsub
--array-param-file) /!in this version the DB scheme has changed. If you
want to upgrade your installation from a previous 2.3 release then you
have to execute in your database one of these SQL script (stop OAR
before):

mysql:

DB/mysql_structure_upgrade_2.3.1-2.3.3.sql

postgres:

DB/pg_structure_upgrade_2.3.1-2.3.3.sql

version 2.3.2:

� Change scheduler timeout implementation to schedule the maximum of
jobs.

� Bug #5879: do not show initial request in oarstat when it is not a job
of the user who launched the oarstat command (oar or root).

� Add a --event option to oarnodes and oarstat to display events recorded
for a job or node

� Display reserved resources for a validated waiting reservation, with a
hint in their state

� Fix oarproperty: property names are lowercase

� Fix OAR JOB PROPERTIES FILE: do not display system properties

� Add a new user command: oarprint which allow to pretty print resource
properties of a job

� Debug temporary job UID feature

� Add ’kill -9’ on subprocesses that reached a timeout (avoid Perl to wait
something)

� desktop computing feature is now available again. (ex: oarsub -t desk-
top computing date)

� Add versioning feature for admission rules with Subversion

27

version 2.3.1:

� Add new oarmonitor command. This will permit to monitor OAR jobs
on compute nodes.

� Remove sudo dependency and replace it by the commands “oardo” and
“oardodo”.

� Add possibility to create a temporary user for each jobs on compute
nodes. So you can perform very strong restrictions for each job (ex:
bandwidth restrictions with iptable, memory management, ... every-
thing that can be handled with a user id)

� Debian packaging: Run OAR specific sshd with root privileges (under
heavy load, kernel may be more responsive for root processes...)

� Remove ALLOWED NETWORKS tag in oar.conf (added more com-
plexeity than resolving problems)

� /!change database scheme for the field exit code in the table jobs. Now
oarstat exit code line reflects the right exit code of the user passive job
(before, even when the user script was not launched the exit code was
0 which was BAD)

� /!add DB field initial request in the table jobs that stores the oarsub
line of the user

� Feature Request #4868: Add a parameter to specify what the “nodes”
resource is a synomym for. Network address must be seen as an internal
data and not used.

� Scheduler: add timeout for each job == 1/4 of the remaining scheduler
timeout.

� Bug #4866: now the whole node is Suspected instead of just the par
where there is no job onto. So it is possible to have a job on Suspected
nodes.

� Add job walltime (in seconds) in parameter of prologue and epilogue
on compute nodes.

� oarnodes does not show system properties anymore.

� New feature: container job type now allows to submit inner jobs for a
scheduling within the container job

� Monika refactoring and now in the oar packaging.

� Added a table schema in the db with the field version, reprensenting
the version of the db schema.

� Added a field DB PORT in the oar config file.

� Bug #5518: add right initialization of the job user name.

� Add new oaradmin command. This will permit to create resources and
manage admission rules more easily.

� Bug #5692: change source code into a right Perl 5.10 syntax.

28

version 2.2.12:

� Bug #5239: fix the bug if there are spaces into job name or project

� Fix the bug in Iolib if DEAD SWITCH TIME >0

� Fix a bug in bipbip when calling the cpuset manager to clean jobs in
error

� Bug #5469: fix the bug with reservations and Dead resources

� Bug #5535: checks for reservations made at a same time was wrong.

� New feature: local checks on nodes can be plugged in the oarnodecheck
mechanism. Results can be asynchronously checked from the server
(taktuk ping checker)

� Add 2 new tables to keep track of the scheduling decisions (gantt jobs predictions log
and gantt jobs resources log). This will help debugging scheduling trou-
bles (see SCHEDULER LOG DECISIONS in oar.conf)

� Now reservations are scheduled only once (at submission time). Re-
sources allocated to a reservations are definitively set once the validated
is done and won’t change in next scheduler’s pass.

� Fix DrawGantt to not display besteffort jobs in the future which is
meaningless.

version 2.2.11:

� Fix Debian package dependency on a CGI web server.

� Fix little bug: remove notification (scheduled start time) for Interactive
reservation.

� Fix bug in reservation: take care of the SCHEDULER JOB SECURITY TIME
for reservations to check.

� Fix bug: add a lock around the section which creates and feed the OAR
cpuset.

� Taktuk command line API has changed (we need taktuk >= 3.6).

� Fix extra ’ in the name of output files when using a job name.

� Bug #4740: open the file in oarsub with user privileges (-S option)

� Bug #4787: check if the remote socket is defined (problem of timing
with nmap)

� Feature Request #4874: check system names when renaming properties

� DrawGantt can export charts to be reused to build a global multi-OAR
view (e.g. DrawGridGantt).

� Bug #4990: DrawGantt now uses the database localtime as its time
reference.

version 2.2.10:

� Job dependencies: if the required jobs do not have an exit code == 0

29

and in the state Terminated then the schedulers refuse to schedule this
job.

� Add the possibility to disable the halt command on nodes with cm availability
value.

� Enhance oarsub “-S” option (more #OAR parsed).

� Add the possibility to use oarsh without configuring the CPUSETs (can
be useful for users that don’t want to configure there ssh keys)

version 2.2.9:

� Bug 4225: Dump only 1 data structure when using -X or -Y or -D.

� Bug fix in Finishing sequence (Suspect right nodes).

version 2.2.8:

� Bug 4159: remove unneeded Dump print from oarstat.

� Bug 4158: replace XML::Simple module by XML::Dumper one.

� Bug fix for reservation (recalculate the right walltime).

� Print job dependencies in oarstat.

version 2.2.7:

version 2.2.11:

� Fix Debian package dependency on a CGI web server.

� Fix little bug: remove notification (scheduled start time) for Interactive
reservation.

� Fix bug in reservation: take care of the SCHEDULER JOB SECURITY TIME
for reservations to check.

� Fix bug: add a lock around the section which creates and feed the OAR
cpuset.

� Taktuk command line API has changed (we need taktuk >= 3.6).

� Fix extra ’ in the name of output files when using a job name.

� Bug #4740: open the file in oarsub with user privileges (-S option)

� Bug #4787: check if the remote socket is defined (problem of timing
with nmap)

� Feature Request #4874: check system names when renaming properties

� DrawGantt can export charts to be reused to build a global multi-OAR
view (e.g. DrawGridGantt).

� Bug #4990: DrawGantt now uses the database localtime as its time
reference.

30

version 2.2.10:

� Job dependencies: if the required jobs do not have an exit code == 0
and in the state Terminated then the schedulers refuse to schedule this
job.

� Add the possibility to disable the halt command on nodes with cm availability
value.

� Enhance oarsub “-S” option (more #OAR parsed).

� Add the possibility to use oarsh without configuring the CPUSETs (can
be useful for users that don’t want to configure there ssh keys)

version 2.2.9:

� Bug 4225: Dump only 1 data structure when using -X or -Y or -D.

� Bug fix in Finishing sequence (Suspect right nodes).

version 2.2.8:

� Bug 4159: remove unneeded Dump print from oarstat.

� Bug 4158: replace XML::Simple module by XML::Dumper one.

� Bug fix for reservation (recalculate the right walltime).

� Print job dependencies in oarstat.

version 2.2.7:

� Bug 4106: fix oarsh and oarcp issue with some options (erroneous lead-
ing space).

� Bug 4125: remove exit code data when it is not relevant.

� Fix potential bug when changing asynchronously the state of the jobs
into “Terminated” or “Error”.

version 2.2.6:

� Bug fix: job types was not sent to cpuset manager script anymore.
(border effect from bug 4069 resolution)

version 2.2.5:

� Bug fix: remove user command when oar execute the epilogue script on
the nodes.

� Clean debug and mail messages format.

� Remove bad oarsub syntax from oarsub doc.

� Debug xauth path.

� bug 3995: set project correctly when resubmitting a job

31

� debug ’bash -c’ on Fedora

� bug 4069: reservations with CPUSET ERROR (remove bad hosts and
continue with a right integrity in the database)

� bug 4044: fix free resources query for reservation (get the nearest hole
from the beginning of the reservation)

� bug 4013: now Dead, Suspected and Absent resources have different
colors in drawgantt with a popup on them.

version 2.2.4:

� Redirect third party commands into oar.log (easier to debug).

� Add user info into drawgantt interface.

� Some bug fixes.

version 2.2.3:

� Debug prologue and epilogue when oarexec receives a signal.

version 2.2.2:

� Switch nice value of the user processes into 0 in oarsh shell (in case of
sshd was launched with a different priority).

� debug taktuk zombies in pingchecker and oar Tools

version 2.2.1:

� install the “allow clasic ssh” feature by default

� debug DB installer

version 2.2:

� oar server proepilogue.pl: can be used for server prologue and epilogue
to authorize users to access to nodes that are completely allocated by
OAR. If the whole node is assigned then it kills all jobs from the user
if all cpus are assigned.

� the same thing can be done with cpuset manager PAM.pl as the script
used to configure the cpuset. More efficent if cpusets are configured.

� debug cm availability feature to switch on and off nodes automatically
depending on waiting jobs.

� reservations now take care of cm availability field

32

version 2.1.0:

� add “oarcp” command to help the users to copy files using oarsh.

� add sudo configuration to deal with bash. Now oarsub and oarsh have
the same behaviour as ssh (the bash configuration files are loaded cor-
rectly)

� bug fix in drawgantt (loose jobs after submission of a moldable one)

� add SCHEDULER RESOURCES ALWAYS ASSIGNED TYPE into oar.conf.
Thus admin can add some resources for each jobs (like frontale node)

� add possibility to use taktuk to check the aliveness of the nodes

� %jobid% is now replaced in stdout and stderr file names by the effective
job id

� change interface to shu down or wake up nodes automatically (now the
node list is read on STDIN)

� add OARSUB FORCE JOB KEY in oar.conf. It says to create a job
ssh key by default for each job.

� %jobid% is now replaced in the ssh job key name (oarsub -k ...).

� add NODE FILE DB FIELD DISTINCT VALUES in oar.conf that en-
ables the admin to configure the generated containt of the OAR NODE FILE

� change ssh job key oarsub options behaviour

� add options “--reinitialize” and “--delete-before” to the oaraccounting
command

� cpuset are now stored in /dev/cpuset/oar

� debian packaging: configure and launch a specific sshd for the user oar

� use a file descriptor to send the node list --> able to handle a very large
amount of nodes

� every config files are now in /etc/oar/

� oardel can add a besteffort type to jobs and vis versa

version 2.0.2:

� add warnings and exit code to oarnodesetting when there is a bad node
name or resource number

� change package version

� change default behaviour for the cpuset manager.pl (more portable)

� enable a user to use the same ssh key for several jobs (at his own risk!)

� add node hostnames in oarstat -f

� add --accounting and -u options in oarstat

� bug fix on index fields in the database (syncro): bug 2020

� bug fix about server pro/epilogue: bug 2022

� change the default output of oarstat. Now it is usable: bug 1875

33

� remove keys in authorized keys of oar (on the nodes) that do not cor-
respond to an active cpuset (clean after a reboot)

� reread oar.conf after each database connection tries

� add support for X11 forwarding in oarsub -I and -C

� debug mysql initialization script in debian package

� add a variable in oarsh for the default options of ssh to use (more
useful to change if the ssh version installed does not handle one of
these options)

� read oar.conf in oarsh (so admin can more easily change options in this
script)

� add support for X11 forwarding via oarsh

� change variable for oarsh: OARSH JOB ID --> OAR JOB ID

version 2.0.0:

� Now, with the ability to declare any type of resources like licences,
VLAN, IP range, computing resources must have the type default and
a network address not null.

� Possibility to declare associated resources like licences, IP ranges, ...
and to reserve them like others.

� Now you can connect to your jobs (not only for reservations).

� Add “cosystem” job type (execute and do nothing for these jobs).

� New scheduler : “oar sched gantt with timesharing”. You can specify
jobs with the type “timesharing” that indicates that this scheduler can
launch more than 1 job on a resource at a time. It is possible to restrict
this feature with words “user and name”. For example, ’-t timeshar-
ing=user,name’ indicates that only a job from the same user with the
same name can be launched in the same time than it.

� Add PostGresSQL support. So there is a choice to make between MySQL
and PostgresSQL.

� New approach for the scheduling : administrators have to insert into
the databases descriptions about resources and not nodes. Resources
have a network address (physical node) and properties. For example, if
you have dual-processor, then you can create 2 different resources with
the same natwork address but with 2 different processor names.

� The scheduler can now handle resource properties in a hierarchical man-
ner. Thus, for example, you can do “oarsub -l /switch=1/cpu=5” which
submit a job on 5 processors on the same switch.

� Add a signal handler in oarexec and propagate this signal to the user
process.

� Support ’#OAR -p ...’ options in user script.

� Add in oar.conf:

34

– DB BASE PASSWD RO : for security issues, it is possible
to execute request with parts specified by users with a read
only account (like “-p” option).

– OARSUB DEFAULT RESOURCES : when nothing is spec-
ified with the oarsub command then OAR takes this de-
fault resource description.

– OAREXEC DEBUG MODE : turn on or off debug mode
in oarexec (create /tmp/oar/oar.log on nodes).

– FINAUD FREQUENCY : indicates the frequency when
OAR launchs Finaud (search dead nodes).

– SCHEDULER TIMEOUT : indicates to the scheduler the
amount of time after what it must end itself.

– SCHEDULER JOB SECURITY TIME : time between each
job.

– DEAD SWITCH TIME : after this time Absent and Sus-
pected resources are turned on the Dead state.

– PROLOGUE EPILOGUE TIMEOUT : the possibility to
specify a different timeout for prologue and epilogue (PRO-
LOGUE EPILOGUE TIMEOUT).

– PROLOGUE EXEC FILE : you can specify the path of
the prologue script executed on nodes.

– EPILOGUE EXEC FILE : you can specify the path of the
epilogue script executed on nodes.

– GENERIC COMMAND : a specific script may be used
instead of ping to check aliveness of nodes. The script must
return bad nodes on STDERR (1 line for a bad node and
it must have exactly the same name that OAR has given
in argument of the command).

– JOBDEL SOFTWALLTIME : time after a normal frag
that the system waits to retry to frag the job.

– JOBDEL WALLTIME : time after a normal frag that the
system waits before to delete the job arbitrary and suspects
nodes.

– LOG FILE : specify the path of OAR log file (default :
/var/log/oar.log).

� Add wait() in pingchecker to avoid zombies.

� Better code modularization.

� Remove node install part to launch jobs. So it is easier to upgrade from
one version to an other (oarnodesetting must already be installed on
each nodes if we want to use it).

� Users can specify a method to be notified (mail or script).

35

� Add cpuset support

� Add prologue and epilogue script to be executed on the OAR server
before and after launching a job.

� Add dependancy support between jobs (“-a” option in oarsub).

� In oarsub you can specify the launching directory (“-d” option).

� In oarsub you can specify a job name (“-n” option).

� In oarsub you can specify stdout and stderr file names.

� User can resubmit a job (option “--resubmit” in oarsub).

� It is possible to specify a read only database account and it will be used
to evaluate SQL properties given by the user with the oarsub command
(more scecure).

� Add possibility to order assigned resources with their properties by the
scheduler. So you can privilege some resources than others (SCHED-
ULER RESOURCE ORDER tag in oar.conf file)

� a command can be specified to switch off idle nodes (SCHEDULER NODE MANAGER SLEEP CMD,
SCHEDULER NODE MANAGER IDLE TIME, SCHEDULER NODE MANAGER SLEEP TIME
in oar.conf)

� a command can be specified to switch on nodes in the Absent state
according to the resource property cm availability in the table resources
(SCHEDULER NODE MANAGER WAKE UP CMD in oar.conf).

� if a job goes in Error state and this is not its fault then OAR will
resubmit this one.

36

	OAR capabilities
	Description of the different commands
	oarstat
	oarnodes
	oarsub
	oardel
	oarhold
	oarresume

	Desktop computing
	Visualisation tools
	Monika
	DrawOARGantt

	Mechanisms
	How does an interactive oarsub work?
	Job launch
	CPUSET
	SSH connection key definition
	Suspend/resume
	Job deletion
	Checkpoint
	Scheduling
	Job dependencies
	User notification
	Accounting aggregator
	Dynamic nodes coupling features
	Timesharing
	Container jobs
	Besteffort jobs
	Cosystem jobs
	Deploy jobs
	Desktop computing

	FAQ - USER
	Release policy
	How can I submit a moldable job?
	How can I submit a job with a non uniform description?
	Can I perform a fix scheduled reservation and then launch several jobs in it?
	How can a checkpointable job be resubmitted automatically?
	How to submit a non disturbing job for other users?

	OAR CHANGELOG
	version 2.5.3:
	version 2.5.2:
	version 2.5.1:
	version 2.4.4:
	version 2.4.3:
	version 2.4.2:
	version 2.4.1:
	version 2.4.0:
	version 2.3.5:
	version 2.3.4:
	version 2.3.3:
	version 2.3.2:
	version 2.3.1:
	version 2.2.12:
	version 2.2.11:
	version 2.2.10:
	version 2.2.9:
	version 2.2.8:
	version 2.2.7:
	version 2.2.11:
	version 2.2.10:
	version 2.2.9:
	version 2.2.8:
	version 2.2.7:
	version 2.2.6:
	version 2.2.5:
	version 2.2.4:
	version 2.2.3:
	version 2.2.2:
	version 2.2.1:
	version 2.2:
	version 2.1.0:
	version 2.0.2:
	version 2.0.0:

