
OAR Documentation - Admin Guide

Authors: Capit Nicolas, Emeras Joseph
Address: Laboratoire d’Informatique de Grenoble Bat. ENSIMAG - antenne de

Montbonnot ZIRST 51, avenue Jean Kuntzmann 38330 MONTBONNOT
SAINT MARTIN

Contact: nicolas.capit@imag.fr, joseph.emeras@imag.fr
Authors: LIG laboratory
Organization:

LIG laboratory
Status: Stable
Copyright: licenced under the GNU GENERAL PUBLIC LICENSE
Dedication: For administrators.

Abstract: OAR is a resource manager (or batch scheduler) for large clusters. By it’s
functionnalities, it’s near of PBS, LSF, CCS and Condor. It’s suitable for
productive plateforms and research experiments.

BE CAREFULL : THIS DOCUMENTATION IS FOR OAR >= 2.3.0
PDF version : OAR-DOCUMENTATION-ADMIN.pdf

1

mailto:nicolas.capit@imag.fr
mailto:joseph.emeras@imag.fr

Table of Contents

OAR capabilities 6

Installing the OAR batch system 7
Overview . 7
Computing nodes . 7

Installation from the packages . 7
Installation from the tarball . 8
Configuration . 9

oar node ssh access . 9
Init.d scripts . 9

Server node . 9
Installation from the packages . 9
Installation from the tarball . 10
Configuration . 11

The oar database . 11
Init.d scripts . 12
Adding resources to the system 12

Notes . 12
Security issues . 12
PostgreSQL : autovacuum 13
PostgreSQL : authentication 13
About X11 usage in OAR 13
Using Taktuk . 13
CPUSET feature . 14
Energy saving . 14
Disabling SELinux . 14
Intel cpuset id issue . 15
Other issues . 15

Frontend nodes . 15
Installation from the packages . 15
Installation from the tarball . 16
Configuration . 17

Coherent configuration files between server node and user
nodes . 17

OAR RESTful API Installation . 17
From the packaging . 17
From the sources . 18
Configuration . 19

Visualization node . 20

2

Description . 20
Installation from the packages . 20
Installation from the tarball . 20
Configuration . 21

Further informations . 22

Security aspects in OAR 22

Administrator commands 23
oarproperty . 23
oarnodesetting . 24
oaradmin . 24
oarremoveresource . 25
oaraccounting . 26
oarnotify . 26
oarmonitor . 26

Database scheme 27
accounting . 27
admission rules . 28
event logs . 30
event log hostnames . 32
files . 33
frag jobs . 33
gantt jobs resources . 34
gantt jobs resources visu . 34
gantt jobs predictions . 34
gantt jobs predictions visu . 35
jobs . 35
job dependencies . 38
moldable job descriptions . 38
job resource groups . 38
job resource descriptions . 39
job state logs . 39
job types . 40
resources . 40
resource logs . 42
assigned resources . 43
queues . 43
challenges . 43

Configuration file 44

Modules descriptions 50

3

Almighty . 50
Sarko . 53
Judas . 54
Leon . 54
Runner . 55
NodeChangeState . 56
Scheduler . 56

oar sched gantt with timesharing 56
oar sched gantt with timesharing and fairsharing 57

Hulot . 57

Internal mechanisms 61
Job execution . 61
Scheduling . 62

FAQ - ADMIN 62
Release policy . 62
What means the error “Bad configuration option: PermitLocalCommand”
when I am using oarsh? . 62
How to manage start/stop of the nodes? . 63
How can I manage scheduling queues? . 63
How can I handle licence tokens? . 63
How can I handle multiple clusters with one OAR? 64
How to configure a more ecological cluster (or how to make some power
consumption economies)? . 65
How to configure temporary UID for each job? 66
How to enable jobs to connect to the frontales from the nodes using oarsh? 66
A job remains in the “Finishing” state, what can I do? 67
How can I write my own scheduler? . 67

OAR’s scheduler in ocaml 67
Intro . 67
Features: . 67
Missing: . 68
Next: . 68
ToDo: . 68
Misc: . 69
Done: . 69
Remarks and misc: . 69
Bugs: . 69
Debug: . 69
What is the syntax of this documentation? 69

OAR CHANGELOG 70

4

version 2.5.3: . 70
version 2.5.2: . 70
version 2.5.1: . 71
version 2.4.4: . 73
version 2.4.3: . 74
version 2.4.2: . 74
version 2.4.1: . 74
version 2.4.0: . 74
version 2.3.5: . 76
version 2.3.4: . 76
version 2.3.3: . 77
version 2.3.2: . 77
version 2.3.1: . 78
version 2.2.12: . 79
version 2.2.11: . 79
version 2.2.10: . 80
version 2.2.9: . 80
version 2.2.8: . 80
version 2.2.7: . 80
version 2.2.11: . 80
version 2.2.10: . 81
version 2.2.9: . 81
version 2.2.8: . 81
version 2.2.7: . 81
version 2.2.6: . 81
version 2.2.5: . 81
version 2.2.4: . 82
version 2.2.3: . 82
version 2.2.2: . 82
version 2.2.1: . 82
version 2.2: . 82
version 2.1.0: . 83
version 2.0.2: . 83
version 2.0.0: . 84

OAR Archives 86
module Accounting . 87
desktop computing . 87
drmaa-c . 87
moldable . 87
ocaml-schedulers . 87
poar . 87
poar-proto . 87
testsuite . 87

5

tgoar . 87

OAR capabilities

Oar is an opensource batch scheduler which provides a simple and flexible exploitation
of a cluster.

It manages resources of clusters as a traditional batch scheduler (as PBS / Torque /
LSF / SGE). In other words, it doesn’t execute your job on the resources but manages
them (reservation, acces granting) in order to allow you to connect these resources and
use them.

Its design is based on high level tools:

� relational database engine MySQL or PostgreSQL,

� scripting language Perl,

� confinement system mechanism cpuset,

� scalable exploiting tool Taktuk.

It is flexible enough to be suitable for production clusters and research experiments.
It currently manages over than 5000 nodes and has executed more than 5 million jobs.

OAR advantages:

� No specific daemon on nodes.

� No dependence on specific computing libraries like MPI. We support
all sort of parallel user applications.

� Upgrades are made on the servers, nothing to do on computing nodes.

� CPUSET (2.6 linux kernel) integration which restricts the jobs on as-
signed resources (also useful to clean completely a job, even parallel
jobs).

� All administration tasks are performed with the taktuk command (a
large scale remote execution deployment): http://taktuk.gforge.inria.fr/.

� Hierarchical resource requests (handle heterogeneous clusters).

� Gantt scheduling (so you can visualize the internal scheduler decisions).

� Full or partial time-sharing.

� Checkpoint/resubmit.

� Licences servers management support.

� Best effort jobs : if another job wants the same resources then it is
deleted automatically (useful to execute programs like SETI@home).

� Environment deployment support (Kadeploy): http://kadeploy.imag.fr/.

Other more common features:

6

http://taktuk.gforge.inria.fr/
http://kadeploy.imag.fr/

� Batch and Interactive jobs.

� Admission rules.

� Walltime.

� Multi-schedulers support.

� Multi-queues with priority.

� Backfilling.

� First-Fit Scheduler.

� Reservation.

� Support of moldable tasks.

� Check compute nodes.

� Epilogue/Prologue scripts.

� Support of dynamic nodes.

� Logging/Accounting.

� Suspend/resume jobs.

Installing the OAR batch system

Overview

There are currently 3 methods to install OAR (All of them are documented in this page)
:

� with the debian packages

� with the rpm packages

� with the sources

The first thing you have to know is about the OAR architecture. A common OAR
installation is composed of:

� a server node which will hold all of OAR “smartness”. This node will
run the oar server daemon;

� frontend nodes on which you will be allowed to login, then reserve
some computing nodes (oarsub, oarstat, oarnodes, ...);

� several computing nodes (a.k.a. the nodes), on which the jobs will
run.

� and optionally a visualisation node on which all the visualisation web
interfaces (monika, draw-gantt, ...) will be accessible ;

Computing nodes

Installation from the packages

Instructions
For redhat like systems:

7

Add the oar repository

cat <<EOF > /etc/yum.repos.d/oar.repo

[oar]

name=OAR Packages for Enterprise Linux 6 - \$basearch

baseurl=http://oar-ftp.imag.fr/oar/2.5/rpm/stable/

enabled=1

gpgcheck=0

EOF

Install OAR node

yum install oar-node

For the debian like systems:

Add the OAR repository (choose the right one. See http://oar.imag.fr/repositories/)

echo "deb http://oar-ftp.imag.fr/oar/2.5/debian squeeze main" > /etc/apt/sources.list.d/oar.list

curl http://oar-ftp.imag.fr/oar/oarmaster.asc | sudo apt-key add -

apt-get update

Install OAR node

apt-get install oar-node

Installation from the tarball

Requirements
For redhat like systems:

Build dependencies

yum install gcc make tar python-docutils

Common dependencies

yum install Perl Perl-base openssh

For debian like system:

Build dependencies

apt-get install gcc make tar python-docutils

Common dependencies

apt-get install perl perl-base openssh-client openssh-server

Instructions
Get the sources:

8

OAR_VERSION=2.5.2

curl http://oar-ftp.imag.fr/oar/2.5/sources/stable/oar-${OAR_VERSION}.tgz | tar xzvf -

cd oar-${OAR_VERSION}/

build/install/setup:

build

make node-build

install

make node-install

setup

make node-setup

Configuration

oar node ssh access

You need to ensure that the oar user can access to each nodes through ssh. To ensure
that, you can just copy the /var/lib/oar/.ssh folder from the oar server to each nodes
(ensure that /var/lib/oar/.ssh has the right permissions).

Init.d scripts

If you have installed OAR from sources, you need to become root user and install man-
ually the {init.d,default,sysconfig} scripts present in the folders:

$PREFIX/share/doc/oar-node/examples/scripts/{init.d,default,sysconfig}

Then you just need to use the script /etc/init.d/oar-node to start the ssh daemon
dedicated to oar-node.

Server node

Installation from the packages

Instructions
For redhat like systems:

Add the epel repository (choose the right version depending on your operating system)

rpm -i http://download.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-5.noarch.rpm

Add the oar repository

cat <<EOF > /etc/yum.repos.d/oar.repo

[oar]

name=OAR Packages for Enterprise Linux 6 - \$basearch

baseurl=http://oar-ftp.imag.fr/oar/2.5/rpm/stable/

9

enabled=1

gpgcheck=0

EOF

Install OAR server for the PostgreSQL backend

yum install oar-server oar-server-pgsql

or Install OAR server for the MySQL backend

yum install oar-server oar-server-mysql

For the debian like systems:

Add the OAR repository (choose the right one. See http://oar.imag.fr/repositories/)

echo "deb http://oar-ftp.imag.fr/oar/2.5/debian squeeze main" > /etc/apt/sources.list.d/oar.list

curl http://oar-ftp.imag.fr/oar/oarmaster.asc | sudo apt-key add -

apt-get update

Install OAR server for the PostgreSQL backend

apt-get install oar-server oar-server-pgsql

or Install OAR server for the MySQL backend

apt-get install oar-server oar-server-mysql

Installation from the tarball

Requirements
For redhat like systems:

Add the epel repository (choose the right version depending on your operating system)

rpm -i http://download.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-5.noarch.rpm

Build dependencies

yum install gcc make tar python-docutils

Common dependencies

yum install Perl Perl-base openssh Perl-DBI perl-Sort-Versions

MySQL dependencies

yum install mysql-server mysql perl-DBD-MySQL

PostgreSQL dependencies

yum install postgresql-server postgresql perl-DBD-Pg

10

For debian like system:

Build dependencies

apt-get install gcc make tar python-docutils

Common dependencies

apt-get install perl perl-base openssh-client openssh-server libdbi-perl libsort-versions-perl

MySQL dependencies

apt-get install mysql-server mysql-client libdbd-mysql-perl

PostgreSQL dependencies

apt-get install postgresql-server postgresql-client libdbd-pg-perl

Instructions
Get the sources:

OAR_VERSION=2.5.2

curl http://oar-ftp.imag.fr/oar/2.5/sources/stable/oar-${OAR_VERSION}.tgz | tar xzvf -

cd oar-${OAR_VERSION}/

Build/Install/Setup the OAR server:

build

make server-build

install

make server-install

setup

make server-setup

Configuration

The oar database

Define the database configuration in /etc/oar/oar.conf. You need to set the variables
DB_TYPE, DB_HOSTNAME, DB_PORT, DB_BASE_NAME, DB_BASE_LOGIN, DB_BASE_PASSWD,

DB_BASE_LOGIN_RO, DB_BASE_PASSWD_RO:

vi /etc/oar/oar.conf

Create the database and the database users:

General case

oar-database --create --db-admin-user <ADMIN_USER> --db-admin-pass <ADMIN_PASS>

OR, for PostgreSQL, in case the database is installed locally

oar-database --create --db-is-local

11

Init.d scripts

If you have installed OAR from sources, you need to become root user and install man-
ually the init.d/default/sysconfig scripts present in the folders:

$PREFIX/share/doc/oar-server/examples/scripts/{init.d,default,sysconfig}

Then use the script /etc/init.d/oar-server to start the OAR server daemon.

Adding resources to the system

If you want to automatically initialize your cluster then you just need to launch
oar_resources_init. It will detect the resources from the nodes that you put in a file
and store right OAR commands to initialize the database with the appropriate values
for the memory and the cpuset properties. Just try...

There is also a tool to help you managing your oar resources and admission rules :
oaradmin. Take a look at the oaradmin documentation in the administrator commands
section for more details. You can also read this tips:

http://wiki-oar.imag.fr/index.php/Customization_tips#Using_oaradmin_to_initiate_the_resources

Otherwise:
To add resources to your system, you can use (as root) the command oarnodesetting.

For a complete comprehension of what does this command, type man oarnodesetting.
For now, the two options you will need will be -a (means add a resource) and -h (defines
the resource hostname or ip adress).

For example, to add a computing resource on the node <NODE IP> to OAR instal-
lation, you can type:

oarnodesetting -a -h <NODE_IP>

This will add a resource with <NODE IP> as host IP address.
You also can modify resources properties with -p option, for example:

oarnodesetting -r 1 -p "deploy=YES"

will allow the resource #1 to accept jobs of the type deploy.

Notes

Security issues

For security reasons it is hardly recommended to configure a read only account for
the OAR database (like the above example). Thus you will be able to add this data in
DB BASE LOGIN RO and DB BASE PASSWD RO in oar.conf.

12

PostgreSQL : autovacuum

Be sure to activate the “autovacuum” feature in the “postgresql.conf” file (OAR creates
and deletes a lot of records and this setting cleans the postgres database from unneeded
records).

PostgreSQL : authentication

In case you’ve installed a PostgreSQL database remotly, if your PostgreSQL installa-
tion doesn’t authorize the local connections by default, you need to enable the con-
nections to this database for the oar users. Supposing the OAR server has the address
<OAR SERVER>, you can add the following lines in the pg_hba.conf:

in /etc/postgresql/8.1/main/pg hba.conf or /var/lib/pgsql/data/pg hba.conf
host oar oar ro <OAR SERVER>/32 md5 host oar oar <OAR SERVER>/32
md5

About X11 usage in OAR

The easiest and scalable way to use X11 application on cluster nodes is to open X11
ports and set the right DISPLAY environment variable by hand. Otherwise users can
use X11 forwarding via ssh to access cluster frontal. After that you must configure ssh
server on this frontal with

X11Forwarding yes

X11UseLocalhost no

With this configuration, users can launch X11 applications after a ’oarsub -I’ on the
given node or “oarsh -X node12”.

Using Taktuk

If you want to use taktuk to manage remote administration commands, you have to install
it. You can find information about taktuk from its website: http://taktuk.gforge.inria.fr.

Note: Taktuk is scalable remote command execution without the need to install special
stuffs on nodes. So it is very useful to administer a large amount of server.

Then, you have to edit your oar configuration file and to fill in the different related
parameters:

� TAKTUK CMD (the path to the taktuk command)

� PINGCHECKER TAKTUK ARG COMMAND (the command used to
check resources states)

� SCHEDULER NODE MANAGER SLEEP CMD (command used for
halting nodes)

13

http://taktuk.gforge.inria.fr

CPUSET feature

OAR uses the CPUSET features provided with the Linux kernel >= 2.6. This enables
to restrict user processes only on reserved processors and to clean correctly the nodes
after the end of the jobs.

For more information, look at the CPUSET file.

Energy saving

Starting with version 2.4.3, OAR provides a module responsible of advanced management
of wake-up/shut-down of nodes when they are not used. To activate this feature, you
have to:

� provide 2 commands or scripts which will be executed on the oar
server to shutdown (or set into standby) some nodes and to wake-
up some nodes (configure the path of those commands into the EN-
ERGY SAVING NODE MANAGER WAKE UP CMD and ENERGY SAVING NODE MANAGER SHUT DOWN CMD
variables into oar.conf)

� configure the “available upto” property of all your nodes:

– available upto=0 : to disable the wake-up and halt

– available upto=1 : to disable the wake-up (but not the halt)

– available upto=2147483647 : to disable the halt (but not the
wake-up)

– available upto=2147483646 : to enable wake-up/halt forever

– available upto=<timestamp> : to enable the halt, and the
wake-up until the date given by <timestamp>

� activate the energy saving module by setting ENERGY SAVING INTERNAL=“yes”
and configuring the ENERGY * variables into oar.conf

� configure the metascheduler time values into SCHEDULER NODE MANAGER IDLE TIME,
SCHEDULER NODE MANAGER SLEEP TIME and SCHEDULER NODE MANAGER WAKEUP TIME
variables of the oar.conf file.

� restart the oar server (you should see an “Almighty” process more).

You need to restart OAR each time you change an ENERGY * variable. More infor-
mations are available inside the oar.conf file itself. For more details about the mechanism,
take a look at the “Hulot” module documentation.

Disabling SELinux

On some distributions, SELinux is enabled by default. There is currently no OAR support
for SELinux. So, you need to disable SELinux, if enabled.

14

Intel cpuset id issue

The cpuset ids on an intel platform are not persistent across reboot. So you need to
update the cpuset ids in the resource database at startup for each computing node. You
can do this by using the /etc/oar/update_cpuset_id.sh script. The following page
give more informations on how configuring it:

http://wiki-oar.imag.fr/index.php/Configuration tips#Start.2Fstop of nodes using ssh keys

Other issues

You can take a look at the “Customizaion tips” on the OAR Wiki:

http://wiki-oar.imag.fr/index.php/Customization tips

Frontend nodes

Installation from the packages

Instructions
For redhat like systems:

Add the epel repository (choose the right version depending on your operating system)

rpm -i http://download.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-5.noarch.rpm

Add the oar repository

cat <<EOF > /etc/yum.repos.d/oar.repo

[oar]

name=OAR Packages for Enterprise Linux 6 - \$basearch

baseurl=http://oar-ftp.imag.fr/oar/2.5/rpm/stable/

enabled=1

gpgcheck=0

EOF

Install OAR user for the PostgreSQL backend

yum install oar-user oar-user-pgsql

or Install OAR user for the MySQL backend

yum install oar-user oar-user-mysql

For the debian like systems:

Add the OAR repository (choose the right one. See http://oar.imag.fr/repositories/)

echo "deb http://oar-ftp.imag.fr/oar/2.5/debian squeeze main" > /etc/apt/sources.list.d/oar.list

curl http://oar-ftp.imag.fr/oar/oarmaster.asc | sudo apt-key add -

15

http://oar.imag.fr/archive/wiki-oar/index.php/Configuration_tips#Start.2Fstop_of_nodes_using_ssh_keys
http://oar.imag.fr/archive/wiki-oar/index.php/Customization_tips

apt-get update

Install OAR server for the PostgreSQL backend

apt-get install oar-user oar-user-pgsql

or Install OAR server for the MySQL backend

apt-get install oar-user oar-user-mysql

Installation from the tarball

Requirements
For redhat like systems:

Build dependencies

yum install gcc make tar python-docutils

Common dependencies

yum install Perl Perl-base openssh Perl-DBI

MySQL dependencies

yum install mysql perl-DBD-MySQL

PostgreSQL dependencies

yum install postgresql perl-DBD-Pg

For debian like system:

Build dependencies

apt-get install gcc make tar python-docutils

Common dependencies

apt-get install perl perl-base openssh-client openssh-server libdbi-perl

MySQL dependencies

apt-get install mysql-client libdbd-mysql-perl

PostgreSQL dependencies

apt-get install postgresql-client libdbd-pg-perl

Instructions
Get the sources:

OAR_VERSION=2.5.2

curl http://oar-ftp.imag.fr/oar/2.5/sources/stable/oar-${OAR_VERSION}.tgz | tar xzvf -

cd oar-${OAR_VERSION}/

16

Build/Install/setup:

build

make user-build

install

make user-install

setup

make user-setup

Configuration

Coherent configuration files between server node and user nodes

You need to have a coherent oar configuration between the server node and the user
nodes. So you can just copy the /etc/oar directory from to server node to the user
nodes.

OAR RESTful API Installation

Since the version 2.5.2, OAR offers an API for users and admins interactions. This api
must be installed on a frontend node (with the user module installed).

From the packaging

For redhat like systems:

Add the oar repository

cat <<EOF > /etc/yum.repos.d/oar.repo

[oar]

name=OAR Packages for Enterprise Linux 6 - \$basearch

baseurl=http://oar-ftp.imag.fr/oar/2.5/rpm/stable/

enabled=1

gpgcheck=0

EOF

Install apache FastCGI module (optional but highly recommended)

FIXME:

Install OAR Restful api

yum install oar-restful-api

For the debian like systems:

Add the OAR repository (choose the right one. See http://oar.imag.fr/repositories/)

echo "deb http://oar-ftp.imag.fr/oar/2.5/debian squeeze main" > /etc/apt/sources.list.d/oar.list

17

curl http://oar-ftp.imag.fr/oar/oarmaster.asc | sudo apt-key add -

apt-get update

Install apache FastCGI module (optional but highly recommended)

apt-get install libapache2-mod-fastcgi

Install OAR Restful api

apt-get install oar-restful-api

From the sources

Requirements:
For redhat like systems:

Build dependencies

yum install gcc make tar python-docutils

Common dependencies

yum install perl perl-base perl-DBI perl-CGI perl-JSON perl-YAML perl-libwww-perl httpd

FastCGI dependency (optional but highly recommended)

FIXME:

MySQL dependencies

yum install mysql perl-DBD-MySQL

PostgreSQL dependencies

yum install postgresql perl-DBD-Pg

For debian like system:

Build dependencies

apt-get install gcc make tar python-docutils

Common dependencies

apt-get install perl perl-base libdbi-perl libjson-perl libyaml-perl libwww-perl httpd-cgi libcgi-fast-perl

FastCGI dependency (optional but highly recommended)

apt-get install libapache2-mod-fastcgi

MySQL dependencies

apt-get install mysql-server mysql-client libdbd-mysql-perl

PostgreSQL dependencies

apt-get install postgresql-server postgresql-client libdbd-pg-perl

18

Instructions
Get the sources:

OAR_VERSION=2.5.2

curl http://oar-ftp.imag.fr/oar/2.5/sources/stable/oar-${OAR_VERSION}.tgz | tar xzvf -

cd oar-${OAR_VERSION}/

build/install/setup:

build

make api-build

install

make api-install

setup

make api-setup

Configuration

Configuring OAR

For the moment, the API needs the user tools to be installed on the same host
(’make user-install’ or oar-user package). A suitable /etc/oar/oar.conf

should be present. For the API to work, you should have the oarstat/oarnodes/oarsub
commands to work (on the same host you installed the API)

Configuring Apache

The api provides a default configuration file (/etc/oar/apache-api.conf) that
is using a identd user identification enabled only from localhost. Edit the /etc/oar/apache-api.conf
file and customize it to reflect the authentication mechanism you want to use.
For ident, you may have to install a “identd” daemon on your distrib. The steps
may be:

� Install and run an identd daemon on your server (like pidentd).
� Activate the ident auth mechanism into apache (a2enmod ident).
� Activate the headers apache module (a2enmod headers).
� Activate the rewrite apache module (a2enmod rewrite).
� Customize apache-api.conf to allow the hosts you trust for

ident.

YAML, JSON, XML

You need at least one of the YAML or JSON perl module to be installed on the
host running the API.

Test

You may test the API with a simple wget:

19

wget -O - http://localhost/oarapi/resources.html

It should give you the list of resources in the yaml format but enclosed in
an html page. To test if the authentication works, you need to post a new job.
See the example.txt file that gives you example queries with a ruby rest client.

Visualization node

Description

There are two different tools. One, named Monika which displays the current cluster
state with all active and waiting jobs. The other, named drawgantt which displays node
occupation in a lapse of time. These tools are CGI scripts and generate HTML pages.

Installation from the packages

Instructions
For redhat like systems:

Add the oar repository

cat <<EOF > /etc/yum.repos.d/oar.repo

[oar]

name=OAR Packages for Enterprise Linux 6 - \$basearch

baseurl=http://oar-ftp.imag.fr/oar/2.5/rpm/stable/

enabled=1

gpgcheck=0

EOF

yum install oar-web-status

For the debian like systems:

Add the OAR repository (choose the right one. See http://oar.imag.fr/repositories/)

echo "deb http://oar-ftp.imag.fr/oar/2.5/debian squeeze main" > /etc/apt/sources.list.d/oar.list

curl http://oar-ftp.imag.fr/oar/oarmaster.asc | sudo apt-key add -

apt-get update

apt-get install oar-web-status

Installation from the tarball

Requirements:
For redhat like systems:

20

Build dependencies

yum install gcc make tar python-docutils

Common dependencies

yum install perl perl-base perl-DBI ruby-GD ruby-DBI perl-Tie-IxHash perl-Sort-Naturally perl-AppConfig

MySQL dependencies

yum install mysql perl-DBD-MySQL ruby-mysql

PostgreSQL dependencies

yum install postgresql perl-DBD-Pg ruby-pg

For debian like system:

Build dependencies

apt-get install gcc make tar python-docutils

Common dependencies

apt-get install perl perl-base ruby libgd-ruby1.8 libdbi-perl libtie-ixhash-perl libappconfig-perl libsort-naturally-perl

MySQL dependencies

apt-get install libdbd-mysql-perl libdbd-mysql-ruby

PostgreSQL dependencies

apt-get install libdbd-pg-perl libdbd-pg-ruby

Instructions
Get the sources:

OAR_VERSION=2.5.2

curl http://oar-ftp.imag.fr/oar/2.5/sources/stable/oar-${OAR_VERSION}.tgz | tar xzvf -

cd oar-${OAR_VERSION}/

build/install/setup:

build

make monika-build draw-gantt-build www-conf-build

install

make monika-install draw-gantt-install www-conf-install

setup

make monika-setup draw-gantt-setup www-conf-setup

Configuration

Drawgantt configuration

21

� Edit /etc/oar/drawgantt.conf to fit your configuration.

Monika configuration

� Edit /etc/oar/monika.conf to fit your configuration.

httpd configuration

� You need to edit /etc/oar/apache.conf to fit your needs and verify
that you http server configured.

Further informations

For further information, please check the documentation section on the OAR website
http://oar.imag.fr/.

Security aspects in OAR

In OAR2, security and user switching is managed by the “oardodo” script. It is a suid
script executable only by root and the oar group members that is used to launch a
command, a terminal or a script with the privileges of a particular user. When “oardodo”
is called, it checks the value of an environment variable: OARDO BECOME USER.

� If this variable is empty, “oardodo” will execute the command with the
privileges of the superuser (root).

� Else, this variable contains the name of the user that will be used to
execute the command.

Here are the scripts/modules where “oardodo” is called and which user is used during
this call:

� OAR::Modules::Judas:
this module is used for logging and notification.

– user notification: email or command execution.OARDO BECOME USER
= user

� oarsub:
this script is used for submitting jobs or reservations.

– read user script

– connection to the job and the remote shell

– keys management

– job key export

for all these functions, the user used in the OARDO BECOME USER
variable is the user that submits the job.

� pingchecker:
this module is used to check resources health. Here, the user is root.

22

http://oar.imag.fr/

� oarexec:
executed on the first reserved node, oarexec executes the job pro-
logue and initiate the job.

– the “clean” method kills every oarsub connection process in
superuser mode

– “kill children” method kills every child of the process in supe-
ruser mode

– execution of a passive job in user mode

– getting of the user shell in user mode

– checkpointing in superuser mode

� job resource manager:
The job resource manager script is a perl script that oar server
deploys on nodes to manage cpusets, users, job keys...

– cpuset creation and clean is executed in superuser mode

� oarsh shell:
shell program used with the oarsh script. It adds its own process
in the cpuset and launches the shell or the script of the user.

– cpuset filling, “nice” and display management are executed as
root.

– TTY login is executed as user.

� oarsh:
oar’s ssh wrapper to connect from node to node. It contains all the
context variables usefull for this connection.

– display management and connection with a user job key file
are executed
as user.

Administrator commands

oarproperty

This command manages OAR resource properties stored in the database.
Options are:

-l : list properties

-a NAME : add a property

-c : sql new field of type VARCHAR(255) (default is integer)

-d NAME : delete a property

-r "OLD_NAME,NEW_NAME" : rename property OLD_NAME into NEW_NAME

Examples:

23

oarproperty -a cpu_freq

oarproperty -a type

oarproperty -r "cpu_freq,freq"

oarnodesetting

This command permits to change the state or a property of a node or of several resources
resources.

By default the node name used by oarnodesetting is the result of the command host-
name.

Options are:

-a : add a new resource

-s : state to assign to the node:

* "Alive" : a job can be run on the node.

* "Absent" : administrator wants to remove the node from the pool

for a moment.

* "Dead" : the node will not be used and will be deleted.

-h : specify the node name (override hostname).

-r : specify the resource number

--sql : get resource identifiers which respond to the

SQL where clause on the table jobs

(ex: "type = ’default’")

-p : change the value of a property specified resources.

-n : specify this option if you do not want to wait the end of jobs running

on this node when you change its state into "Absent" or "Dead".

oaradmin

This command permits to create resources and manage admission rules easily. An op-
tional feature permits versioning changes in admission rules and conf files.

Requirements:

For oaradmin, the following packages must be installed:

� Perl-Yaml

� Ruby 1.8 or greater

� Ruby-Yaml

� Ruby-DBI

� Subversion for the optional versioning feature

Options for resources subcommand are:

24

-a, --add Add new resources

--cpusetproperty=prop Property name for cpuset numbers

-s, --select Select resources for update

-p, --property Set value for a property

-d, --delete Delete resources

-c, --commit Commit in oar database

Examples:

oaradmin resources -a /node=mycluster{12}.domain/cpu={2}/core={2}

oaradmin resources -a /node=mycluster-[1-250].domain/cpu={2}

oaradmin resources -a /node=mycluster-[1-250].domain/cpu={2} -p memnode=1024 -p cpufreq=3.2 -p cputype=xeon

Options for rules subcommand are:

-l, --list List admission rules

-a, --add Add an admission rule

-f, --file File which contains script for admission rule

-d, --delete Delete admission rules

-x, --export Export admission rules

-e, --edit Edit an admission rule

-1, --enable Enable the admission rule (removing comments)

-0, --disable Disable the admission rule (commenting the code)

-H, --history Show all changes made on the admission rule

-R, --revert Revert to the admission rule as it existed in a revision number

Examples:

oaradmin rules -l

oaradmin rules -lll 3

oaradmin rules -e 3

Options for conf subcommand are:

-e, --edit Edit the conf file

-H, --history Show all changes made on the conf file

-R, --revert Revert to the conf file as it existed in a revision number

Examples:

oaradmin conf -e /etc/oar/oar.conf

oaradmin conf -R /etc/oar/oar.conf 3

oarremoveresource

This command permits to remove a resource from the database.
The node must be in the state “Dead” (use oarnodesetting to do this) and then you

can use this command to delete it.

25

oaraccounting

This command permits to update the accounting table for jobs ended since the last
launch.

Option “--reinitialize” removes everything in the accounting table and switches the
“accounted” field of the table jobs into “NO”. So when you will launch the oaraccounting
command again, it will take the whole jobs.

Option “--delete before” removes records from the accounting table that are older than
the amount of time specified. So if the table becomes too big you can shrink old data;
for example:

oaraccounting --delete_before 2678400

(Remove everything older than 31 days)

oarnotify

This command sends commands to the Almighty module and manages scheduling queues.
Option are:

Almighty_tag send this tag to the Almighty (default is TERM)

-e active an existing queue

-d inactive an existing queue

-E active all queues

-D inactive all queues

--add_queue add a new queue; syntax is name,priority,scheduler

(ex: "name,3,oar_sched_gantt_with_timesharing"

--remove_queue remove an existing queue

-l list all queues and there status

-h show this help screen

-v print OAR version number

oarmonitor

This command collects monitoring data from compute nodes and stores them into the
database.

The TAKTUK CMD is mandatory in the oar.conf and data comes from the sensor
file OARMONITOR SENSOR FILE (parse /proc filesystem for example) and print it
in the right way.

For example, the user “oar” or “root” can run the following command on the server:

oarmonitor -j 4242 -f 10

(Retrieve data from compute nodes of the job 4242 every 10 seconds and store them
into database tables monitoring *)

For now, there is just a very minimalist command for the user to view these data. It
creates PNG images and a movie...

26

oarmonitor graph gen.pl -j 4242

Then the user can look into the directory OAR.1653.monitoring in the current direc-
tory.

Database scheme

Database scheme (red lines seem PRIMARY KEY, blue lines seem INDEX)

Note : all dates and duration are stored in an integer manner (number of seconds since
the EPOCH).

accounting

Fields Types Descriptions

window start INT UNSIGNED start date of the accounting interval

window stop INT UNSIGNED stop date of the accounting interval

accounting user VARCHAR(20) user name

accounting project VARCHAR(255) name of the related project

queue name VARCHAR(100) queue name

27

file:../schemas/db_scheme.svg

Fields Types Descriptions

consumption type ENUM(“ASKED”,
“USED”)

“ASKED” corresponds to the walltimes
specified by the user. “USED” corre-
sponds to the effective time used by the
user.

consumption INT UNSIGNED number of seconds used

Primary key:
window start, window stop, accounting user, queue name, accounting project,
consumption type

Index fields:
window start, window stop, accounting user, queue name, accounting project,
consumption type

This table is a summary of the consumption for each user on each queue. This increases
the speed of queries about user consumptions and statistic generation.

Data are inserted through the command oaraccounting (when a job is treated the field
accounted in table jobs is passed into “YES”). So it is possible to regenerate this table
completely in this way :

� Delete all data of the table:

DELETE FROM accounting;

� Set the field accounted in the table jobs to “NO” for each row:

UPDATE jobs SET accounted = "NO";

� Run the oaraccounting command.

You can change the amount of time for each window : edit the oar configuration file
and change the value of the tag ACCOUNTING WINDOW.

admission rules

Fields Types Descriptions

id INT UNSIGNED id number

rule TEXT rule written in Perl applied when a job is
going to be registered

Primary key:
id

Index fields:
None

28

You can use these rules to change some values of some properties when a job is
submitted. So each admission rule is executed in the order of the id field and it can set
several variables. If one of them exits then the others will not be evaluated and oarsub
returns an error.

Some examples are better than a long description :

� Specify the default value for queue parameter

INSERT INTO admission_rules (rule) VALUES(’

if (not defined($queue_name)) {

$queue_name="default";

}

’);

� Avoid users except oar to go in the admin queue

INSERT INTO admission_rules (rule) VALUES (’

if (($queue_name eq "admin") && ($user ne "oar")) {

die("[ADMISSION RULE] Only oar user can submit jobs in the admin queue\\n");

}

’);

� Restrict the maximum of the walltime for interactive jobs

INSERT INTO admission_rules (rule) VALUES (’

my $max_walltime = OAR::IO::sql_to_duration("12:00:00");

if ($jobType eq "INTERACTIVE"){

foreach my $mold (@{$ref_resource_list}){

if (

(defined($mold->[1])) and

($max_walltime < $mold->[1])

){

print("[ADMISSION RULE] Walltime to big for an INTERACTIVE job so it is set to $max_walltime.\\n");

$mold->[1] = $max_walltime;

}

}

}

’);

� Specify the default walltime

INSERT INTO admission_rules (rule) VALUES (’

my $default_wall = OAR::IO::sql_to_duration("2:00:00");

foreach my $mold (@{$ref_resource_list}){

if (!defined($mold->[1])){

print("[ADMISSION RULE] Set default walltime to $default_wall.\\n");

$mold->[1] = $default_wall;

}

}

’);

29

� How to perform actions if the user name is in a file

INSERT INTO admission_rules (rule) VALUES (’

open(FILE, "/tmp/users.txt");

while (($queue_name ne "admin") and ($_ = <FILE>)){

if ($_ =~ m/^\\s*$user\\s*$/m){

print("[ADMISSION RULE] Change assigned queue into admin\\n");

$queue_name = "admin";

}

}

close(FILE);

’);

event logs

Fields Types Descriptions

event id INT UNSIGNED event identifier

type VARCHAR(50) event type

job id INT UNSIGNED job related of the event

date INT UNSIGNED event date

description VARCHAR(255) textual description of the event

to check ENUM(’YES’, ’NO’) specify if the module NodeChangeState
must check this event to Suspect or not
some nodes

Primary key:
event id

Index fields:
type, to check

The different event types are:

� “PING CHECKER NODE SUSPECTED” : the system detected via
the module “finaud” that a node is not responding.

� “PROLOGUE ERROR” : an error occurred during the execution of the
job prologue (exit code != 0).

� “EPILOGUE ERROR” : an error occurred during the execution of the
job epilogue (exit code != 0).

� “CANNOT CREATE TMP DIRECTORY” : OAR cannot create the
directory where all information files will be stored.

30

� “CAN NOT WRITE NODE FILE” : the system was not able to write
file which had to contain the node list on the first node (/tmp/OAR job id).

� “CAN NOT WRITE PID FILE” : the system was not able to write the
file which had to contain the pid of oarexec process on the first node
(/tmp/pid of oarexec for job id).

� “USER SHELL” : the system was not able to get informations about
the user shell on the first node.

� “EXIT VALUE OAREXEC” : the oarexec process terminated with an
unknown exit code.

� “SEND KILL JOB” : signal that OAR has transmitted a kill signal to
the oarexec of the specified job.

� “LEON KILL BIPBIP TIMEOUT” : Leon module has detected that
something wrong occurred during the kill of a job and so kill the local
bipbip process.

� “EXTERMINATE JOB” : Leon module has detected that something
wrong occurred during the kill of a job and so clean the database and
terminate the job artificially.

� “WORKING DIRECTORY” : the directory from which the job was
submitted does not exist on the node assigned by the system.

� “OUTPUT FILES” : OAR cannot write the output files (stdout and
stderr) in the working directory.

� “CANNOT NOTIFY OARSUB” : OAR cannot notify the oarsub pro-
cess for an interactive job (maybe the user has killed this process).

� “WALLTIME” : the job has reached its walltime.

� “SCHEDULER REDUCE NB NODES FOR RESERVATION”: this means
that there is not enough nodes for the reservation and so the scheduler
do the best and gives less nodes than the user wanted (this occurres
when nodes become Suspected or Absent).

� “BESTEFFORT KILL” : the job is of the type besteffort and was killed
because a normal job wanted the nodes.

� “FRAG JOB REQUEST” : someone wants to delete a job.

� “CHECKPOINT” : the checkpoint signal was sent to the job.

� “CHECKPOINT ERROR” : OAR cannot send the signal to the job.

� “CHECKPOINT SUCCESS” : system has sent the signal correctly.

� “SERVER EPILOGUE TIMEOUT” : epilogue server script has time
outed.

� “SERVER EPILOGUE EXIT CODE ERROR” : epilogue server script
did not return 0.

� “SERVER EPILOGUE ERROR” : cannot find epilogue server script
file.

� “SERVER PROLOGUE TIMEOUT” : prologue server script has time
outed.

31

� “SERVER PROLOGUE EXIT CODE ERROR”: prologue server script
did not return 0.

� “SERVER PROLOGUE ERROR” : cannot find prologue server script
file.

� “CPUSET CLEAN ERROR” : OAR cannot clean correctly cpuset files
for a job on the remote node.

� “MAIL NOTIFICATION ERROR” : a mail cannot be sent.

� “USER MAIL NOTIFICATION”: user mail notification cannot be per-
formed.

� “USER EXEC NOTIFICATION ERROR” : user script execution no-
tification cannot be performed.

� “BIPBIP BAD JOBID” : error when retrieving informations about a
running job.

� “BIPBIP CHALLENGE” : OAR is configured to detach jobs when they
are launched on compute nodes and the job return a bad challenge
number.

� “RESUBMIT JOB AUTOMATICALLY” : the job was automatically
resubmitted.

� “WALLTIME” : the job reached its walltime.

� “REDUCE RESERVATION WALLTIME”: the reservation job was shrunk.

� “SSH TRANSFER TIMEOUT” : node OAR part script was too long
to transfer.

� “BAD HASHTABLE DUMP” : OAR transfered a bad hashtable.

� “LAUNCHING OAREXEC TIMEOUT” : oarexec was too long to ini-
tialize itself.

� “RESERVATION NO NODE” : All nodes were detected as bad for the
reservation job.

event log hostnames

Fields Types Descriptions

event id INT UNSIGNED event identifier

hostname VARCHAR(255) name of the node where the event has oc-
cured

Primary key:
event id

Index fields:
hostname

32

This table stores hostnames related to events like“PING CHECKER NODE SUSPECTED”.

files

Fields Types Descriptions

idFile INT UNSIGNED

md5sum VARCHAR(255)

location VARCHAR(255)

method VARCHAR(255)

compression VARCHAR(255)

size INT UNSIGNED

Primary key:
idFile

Index fields:
md5sum

frag jobs

Fields Types Descriptions

frag id job INT UNSIGNED job id

frag date INT UNSIGNED kill job decision date

frag state ENUM(’LEON’,
’TIMER ARMED’ ,
’LEON EXTERMINATE’,
’FRAGGED’) DEFAULT
’LEON’

state to tell Leon what to do

Primary key:
frag id job

Index fields:
frag state

What do these states mean:

� “LEON” : the Leon module must try to kill the job and change the state
into “TIMER ARMED”.

� “TIMER ARMED” : the Sarko module must wait a response from the
job during a timeout (default is 60s)

33

� “LEON EXTERMINATE” : the Sarko module has decided that the job
time outed and asked Leon to clean up the database.

� “FRAGGED” : job is fragged.

gantt jobs resources

Fields Types Descriptions

moldable job id INT UNSIGNED moldable job id

resource id INT UNSIGNED resource assigned to the job

Primary key:
moldable job id, resource id

Index fields:
None

This table specifies which resources are attributed to which jobs.

gantt jobs resources visu

Fields Types Descriptions

moldable job id INT UNSIGNED moldable job id

resource id INT UNSIGNED resource assigned to the job

Primary key:
moldable job id, resource id

Index fields:
None

This table is the same as gantt jobs resources and is used by visualisation tools. It is
updated atomically (a lock is used).

gantt jobs predictions

Fields Types Descriptions

moldable job id INT UNSIGNED job id

start time INT UNSIGNED date when the job is scheduled to start

Primary key:

34

moldable job id
Index fields:

None

With this table and gantt jobs resources you can know exactly what are the decisions
taken by the schedulers for each waiting jobs.

note: The special job id “0” is used to store the scheduling reference date.

gantt jobs predictions visu

Fields Types Descriptions

moldable job id INT UNSIGNED job id

start time INT UNSIGNED date when the job is scheduled to start

Primary key:
job id

Index fields:
None

This table is the same as gantt jobs predictions and is used by visualisation tools. It
is made up to date in an atomic action (with a lock).

jobs

Fields Types Descriptions

job id INT UNSIGNED job identifier

job name VARCHAR(100) name given by the user

cpuset name VARCHAR(255) name of the cpuset directory used for
this job on each nodes

job type ENUM(’INTERACTIVE’,
’PASSIVE’) DE-
FAULT ’PASSIVE’

specify if the user wants to launch a
program or get an interactive shell

info type VARCHAR(255) some informations about oarsub com-
mand

35

Fields Types Descriptions

state ENUM(’Waiting’,’Hold’,
’toLaunch’, ’toError’,
’toAckReservation’,
’Launching’, ’Run-
ning’ ’Suspended’,
’Resuming’, , ’Fin-
ishing’, ’Terminated’,
’Error’)

job state

reservation ENUM(’None’,
’toSchedule’, ’Sched-
uled’) DEFAULT
’None’

specify if the job is a reservation and
the state of this one

message VARCHAR(255) readable information message for the
user

job user VARCHAR(255) user name

command TEXT program to run

queue name VARCHAR(100) queue name

properties TEXT properties that assigned nodes must
match

launching directory TEXT path of the directory where to launch
the user process

submission time INT UNSIGNED date when the job was submitted

start time INT UNSIGNED date when the job was launched

stop time INT UNSIGNED date when the job was stopped

file id INT UNSIGNED

accounted ENUM(“YES”, “NO”)
DEFAULT “NO”

specify if the job was considered by the
accounting mechanism or not

notify VARCHAR(255) gives the way to notify the user about
the job (mail or script)

assigned moldable job INT UNSIGNED moldable job chosen by the scheduler

checkpoint INT UNSIGNED number of seconds before the walltime
to send the checkpoint signal to the job

checkpoint signal INT UNSIGNED signal to use when checkpointing the
job

stdout file TEXT file name where to redirect program
STDOUT

stderr file TEXT file name where to redirect program
STDERR

36

Fields Types Descriptions

resubmit job id INT UNSIGNED if a job is resubmitted then the new
one store the previous

project VARCHAR(255) arbitrary name given by the user or an
admission rule

suspended ENUM(“YES”,“NO”) specify if the job was suspended
(oarhold)

job env TEXT environment variables to set for the job

exit code INT DEFAULT 0 exit code for passive jobs

job group VARCHAR(255) not used

Primary key:
job id

Index fields:
state, reservation, queue name, accounted, suspended

Explications about the “state” field:

� “Waiting” : the job is waiting OAR scheduler decision.

� “Hold”: user or administrator wants to hold the job (oarhold command).
So it will not be scheduled by the system.

� “toLaunch” : the OAR scheduler has attributed some nodes to the job.
So it will be launched.

� “toError” : something wrong occurred and the job is going into the error
state.

� “toAckReservation” : the OAR scheduler must say “YES” or “NO” to
the waiting oarsub command because it requested a reservation.

� “Launching” : OAR has launched the job and will execute the user
command on the first node.

� “Running” : the user command is executing on the first node.

� “Suspended” : the job was in Running state and there was a request
(oarhold with “-r” option) to suspend this job. In this state other jobs
can be scheduled on the same resources (these resources has the “sus-
pended jobs” field to “YES”).

� “Finishing” : the user command has terminated and OAR is doing work
internally

� “Terminated” : the job has terminated normally.

� “Error” : a problem has occurred.

Explications about the “reservation” field:

37

� “None” : the job is not a reservation.

� “toSchedule” : the job is a reservation and must be approved by the
scheduler.

� “Scheduled” : the job is a reservation and is scheduled by OAR.

job dependencies

Fields Types Descriptions

job id INT UNSIGNED job identifier

job id required INT UNSIGNED job needed to be completed before launch-
ing job id

Primary key:
job id, job id required

Index fields:
job id, job id required

This table is feeded by oarsub command with the “-a” option.

moldable job descriptions

Fields Types Descriptions

moldable id INT UNSIGNED moldable job identifier

moldable job id INT UNSIGNED corresponding job identifier

moldable walltime INT UNSIGNED instance duration

Primary key:
moldable id

Index fields:
moldable job id

A job can be described with several instances. Thus OAR scheduler can choose one of
them. For example it can calculate which instance will finish first. So this table stores
all instances for all jobs.

job resource groups

Fields Types Descriptions

res group id INT UNSIGNED group identifier

38

Fields Types Descriptions

res group moldable id INT UNSIGNED corresponding moldable job identifier

res group property TEXT SQL constraint properties

Primary key:
res group id

Index fields:
res group moldable id

As you can specify job global properties with oarsub and the “-p” option, you can do
the same thing for each resource groups that you define with the “-l” option.

job resource descriptions

Fields Types Descriptions

res job group id INT UNSIGNED corresponding group identifier

res job resource type VARCHAR(255) resource type (name of a field in re-
sources)

res job value INT wanted resource number

res job order INT UNSIGNED order of the request

Primary key:
res job group id, res job resource type, res job order

Index fields:
res job group id

This table store the hierarchical resource description given with oarsub and the “-l”
option.

job state logs

Fields Types Descriptions

job state log id INT UNSIGNED identifier

job id INT UNSIGNED corresponding job identifier

39

Fields Types Descriptions

job state ENUM(’Waiting’,
’Hold’, ’toLaunch’,
’toError’, ’toAck-
Reservation’,
’Launching’, ’Fin-
ishing’, ’Running’,
’Suspended’, ’Resum-
ing’, ’Terminated’,
’Error’)

job state during the interval

date start INT UNSIGNED start date of the interval

date stop INT UNSIGNED end date of the interval

Primary key:
job state log id

Index fields:
job id, job state

This table keeps informations about state changes of jobs.

job types

Fields Types Descriptions

job type id INT UNSIGNED identifier

job id INT UNSIGNED corresponding job identifier

type VARCHAR(255) job type like “deploy”, “timesharing”, ...

type index ENUM(’CURRENT’,
’LOG’)

index field

Primary key:
job type id

Index fields:
job id, type

This table stores job types given with the oarsub command and “-t” options.

resources

40

Fields Types Descriptions

resource id INT UNSIGNED resource identifier

type VARCHAR(100)
DEFAULT “default”

resource type (used for licence resources
for example)

network address VARCHAR(100) node name (used to connect via SSH)

state ENUM(’Alive’,
’Dead’ , ’Suspected’,
’Absent’)

resource state

next state ENUM(’UnChanged’,
’Alive’, ’Dead’, ’Ab-
sent’, ’Suspected’)
DEFAULT ’Un-
Changed’

state for the resource to switch

finaud decision ENUM(’YES’, ’NO’)
DEFAULT ’NO’

tell if the actual state results in a “fin-
aud” module decision

next finaud decision ENUM(’YES’, ’NO’)
DEFAULT ’NO’

tell if the next node state results in a
“finaud” module decision

state num INT corresponding state number (useful with
the SQL “ORDER” query)

suspended jobs ENUM(’YES’,’NO’) specify if there is at least one suspended
job on the resource

scheduler priority INT UNSIGNED arbitrary number given by the system to
select resources with more intelligence

switch VARCHAR(50) name of the switch

cpu INT UNSIGNED global cluster cpu number

cpuset INT UNSIGNED field used with the
JOB RESOURCE MANAGER PROPERTY DB FIELD

besteffort ENUM(’YES’,’NO’) accept or not besteffort jobs

deploy ENUM(’YES’,’NO’) specify if the resource is deployable

expiry date INT UNSIGNED field used for the desktop computing fea-
ture

desktop computing ENUM(’YES’,’NO’) tell if it is a desktop computing resource
(with an agent)

last job date INT UNSIGNED store the date when the resource was
used for the last time

available upto INT UNSIGNED used with compute mode features to
know if an Absent resource can be
switch on

41

Primary key:
resource id

Index fields:
state, next state, type, suspended jobs

State explications:

� “Alive” : the resource is ready to accept a job.

� “Absent” : the oar administrator has decided to pull out the resource.
This computer can come back.

� “Suspected” : OAR system has detected a problem on this resource and
so has suspected it (you can look in the event logs table to know what
has happened). This computer can come back (automatically if this is
a “finaud” module decision).

� “Dead” : The oar administrator considers that the resource will not
come back and will be removed from the pool.

This table permits to specify different properties for each resources. These can be used
with the oarsub command (“-p” and “-l” options).

You can add your own properties with oarproperty command.
These properties can be updated with the oarnodesetting command (“-p” option).
Several properties are added by default:

� switch : you have to register the name of the switch where the node is
plugged.

� cpu : this is a unique name given to each cpus. This enables OAR
scheduler to distinguish all cpus.

� cpuset : this is the name of the cpu on the node. The Linux kernel sets
this to an integer beginning at 0. This field is linked to the configuration
tag JOB RESOURCE MANAGER PROPERTY DB FIELD.

resource logs

Fields Types Descriptions

resource log id INT UNSIGNED unique id

resource id INT UNSIGNED resource identifier

attribute VARCHAR(255) name of corresponding field in resources

value VARCHAR(255) value of the field

date start INT UNSIGNED interval start date

date stop INT UNSIGNED interval stop date

finaud decision ENUM(’YES’,’NO’) store if this is a system change or a human
one

42

Primary key:
None

Index fields:
resource id, attribute

This table permits to keep a trace of every property changes (consequence of the
oarnodesetting command with the “-p” option).

assigned resources

Fields Types Descriptions

moldable job id INT UNSIGNED job id

resource id INT UNSIGNED resource assigned to the job

Primary key:
moldable job id, resource id

Index fields:
moldable job id

This table keeps informations for jobs on which resources they were scheduled.

queues

Fields Types Descriptions

queue name VARCHAR(100) queue name

priority INT UNSIGNED the scheduling priority

scheduler policy VARCHAR(100) path of the associated scheduler

state ENUM(’Active’, ’no-
tActive’) DEFAULT
’Active’

permits to stop the scheduling for a queue

Primary key:
queue name

Index fields:
None

This table contains the schedulers executed by the oar meta scheduler module. Exe-
cutables are launched one after one in the specified priority.

challenges

43

Fields Types Descriptions

job id INT UNSIGNED job identifier

challenge VARCHAR(255) challenge string

ssh private key TEXT DEFAULT
NULL

ssh private key given by the user (in grid
usage it enables to connect onto all nodes
of the job of all clusers with oarsh)

ssh public key TEXT DEFAULT
NULL

ssh public key

Primary key:
job id

Index fields:
None

This table is used to share a secret between OAR server and oarexec process on
computing nodes (avoid a job id being stolen/forged by malicious user).

For security reasons, this table must not be readable for a database account given
to users who want to access OAR internal informations(like statistics).

Configuration file

Be careful, the syntax of this file must be bash compliant(so after editing you must be able
to launch in bash ’source /etc/oar.conf’ and have variables assigned). Each configuration
tag found in /etc/oar.conf is now described:

� Database type : you can use a MySQL or a PostgreSQL database (tags
are “mysql” or “Pg”):

DB_TYPE=mysql

� Database hostname:

DB_HOSTNAME=localhost

- Database port::

DB_PORT=3306

� Database base name:

DB_BASE_NAME=oar

� DataBase user name:

DB_BASE_LOGIN=oar

� DataBase user password:

DB_BASE_PASSWD=oar

44

� DataBase read only user name:

DB_BASE_LOGIN_RO=oar_ro

� DataBase read only user password:

DB_BASE_PASSWD_RO=oar_ro

� OAR server hostname:

SERVER_HOSTNAME=localhost

� OAR server port:

SERVER_PORT=6666

� When the user does not specify a -l option then oar use this:

OARSUB_DEFAULT_RESOURCES="/resource_id=1"

� Force use of job key even if --use-job-key or -k is not set in oarsub:

OARSUB_FORCE_JOB_KEY="no"

� Specify where we are connected in the deploy queue(the node to connect
to when the job is in the deploy queue):

DEPLOY_HOSTNAME="127.0.0.1"

� Specify where we are connected with a job of the cosystem type:

COSYSTEM_HOSTNAME="127.0.0.1"

� Set DETACH JOB FROM SERVER to 1 if you do not want to keep a
ssh connection between the node and the server. Otherwise set this tag
to 0:

DETACH_JOB_FROM_SERVER=1

� Set the directory where OAR will store its temporary files on each nodes
of the cluster. This value MUST be the same in all oar.conf on all nodes:

OAR_RUNTIME_DIRECTORY="/tmp/oar_runtime"

� Specify the database field to use to fill the file on the first node of the job
in $OAR NODE FILE (default is ’network address’). Only resources
with type=default are displayed in this file:

NODE_FILE_DB_FIELD="network_address"

� Specify the database field that will be considered to fill the node file
used by the user on the first node of the job. for each different value of
this field then OAR will put 1 line in the node file(by default “cpu”):

NODE_FILE_DB_FIELD_DISTINCT_VALUES="core"

45

� By default OAR uses the ping command to detect if nodes are down
or not. To enhance this diagnostic you can specify one of these other
methods (give the complete command path):

– OAR taktuk:

PINGCHECKER_TAKTUK_ARG_COMMAND="-t 3 broadcast exec [true]"

If you use sentinelle.pl then you must use this tag:

PINGCHECKER_SENTINELLE_SCRIPT_COMMAND="/var/lib/oar/sentinelle.pl -t 5 -w 20"

– OAR fping:

PINGCHECKER_FPING_COMMAND="/usr/bin/fping -q"

– OAR nmap : it will test to connect on the ssh port
(22):

PINGCHECKER_NMAP_COMMAND="/usr/bin/nmap -p 22 -n -T5"

– OAR generic : a specific script may be used instead
of ping to check aliveness of nodes. The script must
return bad nodes on STDERR (1 line for a bad node
and it must have exactly the same name that OAR has
given in argument of the command):

PINGCHECKER_GENERIC_COMMAND="/path/to/command arg1 arg2"

� OAR log level: 3(debug+warnings+errors), 2(warnings+errors), 1(er-
rors):

LOG_LEVEL=2

� OAR log file:

LOG_FILE="/var/log/oar.log"

� If you want to debug oarexec on nodes then affect 1 (only effective if
DETACH JOB FROM SERVER = 1):

OAREXEC_DEBUG_MODE=0

� Set the granularity of the OAR accounting feature (in seconds). Default
is 1 day (86400s):

ACCOUNTING_WINDOW="86400"

� OAR informations may be notified by email to the administror. Set
accordingly to your configuration the next lines to activate this feature:

MAIL_SMTP_SERVER="smtp.serveur.com"

MAIL_RECIPIENT="user@domain.com"

MAIL_SENDER="oar@domain.com"

� Set the timeout for the prologue and epilogue execution on computing
nodes:

46

PROLOGUE_EPILOGUE_TIMEOUT=60

� Files to execute before and after each job on the first computing node
(by default nothing is executed):

PROLOGUE_EXEC_FILE="/path/to/prog"

EPILOGUE_EXEC_FILE="/path/to/prog"

� Set the timeout for the prologue and epilogue execution on the OAR
server:

SERVER_PROLOGUE_EPILOGUE_TIMEOUT=60

� Files to execute before and after each job on the OAR server (by default
nothing is executed):

SERVER_PROLOGUE_EXEC_FILE="/path/to/prog"

SERVER_EPILOGUE_EXEC_FILE="/path/to/prog"

� Set the frequency for checking Alive and Suspected resources:

FINAUD_FREQUENCY=300

� Set time after which resources become Dead (default is 0 and it means
never):

DEAD_SWITCH_TIME=600

� Maximum of seconds used by a scheduler:

SCHEDULER_TIMEOUT=10

� Time to wait when a reservation has not got all resources that it has
reserved (some resources could have become Suspected or Absent since
the job submission) before to launch the job in the remaining resources:

RESERVATION_WAITING_RESOURCES_TIMEOUT=300

� Time to add between each jobs (time for administration tasks or time
to let computers to reboot):

SCHEDULER_JOB_SECURITY_TIME=1

� Minimum time in seconds that can be considered like a hole where a
job could be scheduled in:

SCHEDULER_GANTT_HOLE_MINIMUM_TIME=300

� You can add an order preference on resource assigned by the sys-
tem(SQL ORDER syntax):

47

SCHEDULER_RESOURCE_ORDER="switch ASC, network_address DESC, resource_id ASC"

� You can specify resources from a resource type that will be always
assigned for each job (for example: enable all jobs to be able to log on
the cluster frontales). For more information, see the FAQ:

SCHEDULER_RESOURCES_ALWAYS_ASSIGNED_TYPE="42 54 12 34"

� This says to the scheduler to treate resources of these types, where there
is a suspended job, like free ones. So some other jobs can be scheduled
on these resources. (list resource types separate with spaces; Default
value is nothing so no other job can be scheduled on suspended job
resources):

SCHEDULER_AVAILABLE_SUSPENDED_RESOURCE_TYPE="default licence vlan"

� Name of the perl script that manages suspend/resume. You have to
install your script in $OARDIR and give only the name of the file
without the entire path. (default is suspend resume manager.pl):

SUSPEND_RESUME_FILE="suspend_resume_manager.pl"

� Files to execute just after a job was suspended and just before a job
was resumed:

JUST_AFTER_SUSPEND_EXEC_FILE="/path/to/prog"

JUST_BEFORE_RESUME_EXEC_FILE="/path/to/prog"

� Timeout for the two previous scripts:

SUSPEND_RESUME_SCRIPT_TIMEOUT=60

� Indicate the name of the database field that contains the cpu number
of the node. If this option is set then users must use oarsh instead of
ssh to walk on each nodes that they have reserved via oarsub.

JOB_RESOURCE_MANAGER_PROPERTY_DB_FIELD=cpuset

� Name of the perl script that manages cpuset. You have to install your
script in $OARDIR and give only the name of the file without the en-
tire path. (default is cpuset manager.pl which handles the linux kernel
cpuset)

JOB_RESOURCE_MANAGER_FILE="cpuset_manager.pl"

� Resource“type”DB field to use if you want to enable the job uid feature.
(create a unique user id per job on each nodes of the job)

JOB_RESOURCE_MANAGER_JOB_UID_TYPE="userid"

48

� If you have installed taktuk and want to use it to manage cpusets then
give the full command path (with your options except“-m”and“-o”and
“-c”). You don’t also have to give any taktuk command.(taktuk version
must be >= 3.6)

TAKTUK_CMD="/usr/bin/taktuk -s"

� If you want to manage nodes to be started and stoped. OAR gives you
this API:

� When OAR scheduler wants some nodes to wake up then it launches
this command and puts on its STDIN the list of nodes to wake up
(one hostname by line).The scheduler looks at available upto field in
the resources table to know if the node will be started for enough time:

SCHEDULER_NODE_MANAGER_WAKE_UP_CMD="/path/to/the/command with your args"

� When OAR considers that some nodes can be shut down, it launches
this command and puts the node list on its STDIN(one hostname by
line):

SCHEDULER_NODE_MANAGER_SLEEP_CMD="/path/to/the/command args"

� Parameters for the scheduler to decide when a node is idle(number of
seconds since the last job was terminated on the nodes):

SCHEDULER_NODE_MANAGER_IDLE_TIME=600

� Parameters for the scheduler to decide if a node will have enough time
to sleep(number of seconds before the next job):

SCHEDULER_NODE_MANAGER_SLEEP_TIME=600

� Command to use to connect to other nodes (default is “ssh” in the
PATH)

OPENSSH_CMD="/usr/bin/ssh"

� These are configuration tags for OAR in the desktop-computing mode:

DESKTOP_COMPUTING_ALLOW_CREATE_NODE=0

DESKTOP_COMPUTING_EXPIRY=10

STAGEOUT_DIR="/var/lib/oar/stageouts/"

STAGEIN_DIR="/var/lib/oar/stageins"

STAGEIN_CACHE_EXPIRY=144

49

� This variable must be set to enable the use of oarsh from a frontale
node. Otherwise you must not set this variable if you are not on a
frontale:

OARSH_OARSTAT_CMD="/usr/bin/oarstat"

� The following variable adds options to ssh. If one option is not handled
by your ssh version just remove it BUT be careful because these options
are there for security reasons:

OARSH_OPENSSH_DEFAULT_OPTIONS="-oProxyCommand=none -oPermitLocalCommand=no"

� Name of the perl script the retrive monitoring data from compute nodes.
This is used in oarmonitor command.

OARMONITOR SENSOR FILE=“/etc/oar/oarmonitor sensor.pl”

Modules descriptions

OAR can be decomposed into several modules which perform different tasks.

Almighty

This module is the OAR server. It decides what actions must be performed. It is divided
into 2 processes:

� One listens to a TCP/IP socket. It waits informations or commands
from OAR user program or from the other modules.

� Another one deals with commands thanks to an automaton and launch
right modules one after one.

It’s behaviour is represented in these schemes.

� General schema:

50

When the Almighty automaton starts it will first open a socket and creates a pipe
for the process communication with it’s forked son. Then, Almighty will fork itself in a
process called “appendice” which role is to listen to incoming connections on the socket
and catch clients messages. These messages will be thereafter piped to Almighty. Then,
the automaton will change it’s state according to what message has been received.

� Scheduler schema:

51

� Finaud schema:

� Leon schema:

� Sarko schema:

52

� ChangeNode schema:

Sarko

This module is executed periodically by the Almighty (default is every 30 seconds).
The jobs of Sarko are :

53

� Look at running job walltimes and ask to frag them if they had expired.

� Detect if fragged jobs are really fragged otherwise asks to exterminate
them.

� In “Desktop Computing” mode, it detects if a node date has expired
and asks to change its state into “Suspected”.

� Can change“Suspected”resources into“Dead”after DEAD SWITCH TIME
seconds.

Judas

This is the module dedicated to print and log every debugging, warning and error mes-
sages.

The notification functions are the following:

� send mail(mail recipient address, object, body, job id) that sends emails
to the OAR admin

� notify user(base, method, host, user, job id, job name, tag, comments)
that parses the notify method. This method can be a user script or a
mail to send. If the “method” field begins with “mail:”, notify user will
send an email to the user. If the beginning is “exec:”, it will execute the
script as the “user”.

The main logging functions are the following:

� redirect everything() this function redirects STDOUT and STDERR
into the log file

� oar debug(message)

� oar warn(message)

� oar error(message)

The three last functions are used to set the log level of the message.

Leon

This module is in charge to delete the jobs. Other OAR modules or commands can ask
to kill a job and this is Leon which performs that.

There are 2 frag types :

� normal : Leon tries to connect to the first node allocated for the job
and terminates the job.

� exterminate : after a timeout if the normal method did not succeed
then Leon notifies this case and clean up the database for these jobs.
So OAR doesn’t know what occured on the node and Suspects it.

54

Runner

This module launches OAR effective jobs. These processes are run asynchronously with
all modules.

For each job, the Runner uses OPENSSH CMD to connect to the first node of the
reservation and propagate a Perl script which handles the execution of the user command.

� for each job in“toError” state, answer to the oarsub client: “BAD JOB”.
This will exit the client with an error code.

� for each job in “toAckReservation” state, try to acknowledge the oarsub
client reservation. If runner cannot contact the client, it will frag the
job.

� for each job to launch, launch job’s bipbip.

� Runner schema:

� bipbip schema:

55

NodeChangeState

This module is in charge of changing resource states and checking if there are jobs on
these.

It also checks all pending events in the table event logs.

Scheduler

This module checks for each reservation jobs if it is valid and launches them at the right
time.

Scheduler launches all gantt scheduler in the order of the priority specified in the
database and update all visualization tables (gantt jobs predictions visu and gantt jobs resources visu).

oar sched gantt with timesharing

This is the default OAR scheduler. It implements all functionalities like timesharing,
moldable jobs, besteffort jobs, ...

By default, this scheduler is used by all default queues.
We have implemented the FIFO with backfilling algorithm. Some parameters can be

changed in the configuration file (see SCHEDULER TIMEOUT, SCHEDULER JOB SECURITY TIME,
SCHEDULER GANTT HOLE MINIMUM TIME, SCHEDULER RESOURCE ORDER).

56

oar sched gantt with timesharing and fairsharing

This scheduler is the same than oar sched gantt with timesharing but it looks at the
consumption past and try to order waiting jobs with fairsharing in mind.

Some parameters can be changed directly in the file:

###

Fairsharing parameters

##########################

Avoid problems if there are too many waiting jobs

my $Karma_max_number_of_jobs_treated = 1000;

number of seconds to consider for the fairsharing

my $Karma_window_size = 3600 * 30;

specify the target percentages for project names (0 if not specified)

my $Karma_project_targets = {

first => 75,

default => 25

};

specify the target percentages for users (0 if not specified)

my $Karma_user_targets = {

oar => 100

};

weight given to each criteria

my $Karma_coeff_project_consumption = 3;

my $Karma_coeff_user_consumption = 2;

my $Karma_coeff_user_asked_consumption = 1;

###

This scheduler takes its historical data in the accounting table. To fill this, the com-
mand oaraccounting have to be run periodically (in a cron job for example). Otherwise
the scheduler cannot be aware of new user consumptions.

Hulot

This module is responsible of the advanced management of the standby mode of the
nodes. It’s related to the energy saving features of OAR. It is an optional module acti-
vated with the ENERGY SAVING INTERNAL=yes configuration variable.

It runs as a fourth“Almighty”daemon and opens a pipe on which it receives commands
from the MetaScheduler. It also communicates with a library called “WindowForker”
that is responsible of forking shut-down/wake-up commands in a way that not too much
commands are started at a time.

57

� Hulot general commands process schema:

When Hulot is activated, the metascheduler sends, each time it is executed, a list of
nodes that need to be woken-up or may be halted. Hulot maintains a list of commands
that have already been sent to the nodes and asks to the windowforker to actually execute
the commands only when it is appropriate. A special feature is the “keepalive” of nodes
depending on some properties: even if the metascheduler asks to shut-down some nodes,
it’s up to Hulot to check if the keepalive constraints are still satisfied. If not, Hulot
refuses to halt the corresponding nodes.

� Hulot checking process schema:

58

Hulot is called each time the metascheduler is called, to do all the checking process.
This process is also executed when Hulot receives normal halt or wake-up commands from
the scheduler. Hulot checks if waking-up nodes are actually Alive or not and suspects the
nodes if they haven’t woken-up before the timeout. It also checks keepalive constraints
and decides to wake-up nodes if a constraint is no more satisfied (for example because
new jobs are running on nodes that are now busy, and no more idle). Hulot also checks
the results of the commands sent by the windowforker and may also suspect a node if
the command exited with non-zero status.

� Hulot wake-up process schema

59

� Hulot shutdown process schema

60

Internal mechanisms

Job execution

61

Scheduling

FAQ - ADMIN

Release policy

Since the version 2.2, release numbers are divided into 3 parts:
� The first represents the design and the implementation used.

� The second represents a set of OAR functionalities.

� The third is incremented after bug fixes.

What means the error “Bad configuration option: PermitLocalCommand”
when I am using oarsh?

For security reasons, on the latest OpenSSH releases you are able to execute a local
command when you are connecting to the remote host and we must deactivate this
option because the oarsh wrapper executes the ssh command into the user oar.

So if you encounter this error message it means that your OpenSSH does not know
this option and you have to remove it from the oar.conf. There is a variable named
OARSH OPENSSH DEFAULT OPTIONS in oar.conf used by oarsh. So you have just
to remove the not yet implemented option.

62

How to manage start/stop of the nodes?

You have to add a script in /etc/init.d which switches resources of the node into the
“Alive” or “Absent” state. So when this script is called at boot time, it will change the
state into “Alive”. And when it is called at halt time, it will change into “Absent”.

There two ways to perform this action:

1. Install OAR “oar-libs” part on all nodes. Thus you will be able to
launch the command oarnodesetting (be careful to right configure
“oar.conf” with database login and password AND to allow network
connections on this database). So you can execute:

oarnodesetting -s Alive -h node_hostname

or

oarnodesetting -s Absent -h node_hostname

2. You do not want to install anything else on each node. So you have
to enable oar user to connect to the server via ssh (for security you
can use another SSH key with restrictions on the command that
oar can launch with this one). Thus you will have in you init script
something like:

sudo -u oar ssh oar-server "oarnodesetting -s Alive -h node_hostname"

or

sudo -u oar ssh oar-server "oarnodesetting -s Absent -h node_hostname"

In this case, further OAR software upgrade will be more painless.

How can I manage scheduling queues?

see oarnotify.

How can I handle licence tokens?

OAR does not manage resources with an empty “network address”. So you can define
resources that are not linked with a real node.

So the steps to configure OAR with the possibility to reserve licences (or whatever
you want that are other notions):

1. Add a new field in the table resources to specify the licence name.

oarproperty -a licence -c

2. Add your licence name resources with oarnodesetting.

oarnodesetting -a -h "" -p type=mathlab -p licence=l1

oarnodesetting -a -h "" -p type=mathlab -p licence=l2

oarnodesetting -a -h "" -p type=fluent -p licence=l1

...

63

After this configuration, users can perform submissions like

oarsub -I -l "/switch=2/nodes=10+{type = ’mathlab’}/licence=20"

So users ask OAR to give them some other resource types but nothing block their
program to take more licences than they asked. You can resolve this problem with the
SERVER SCRIPT EXEC FILE configuration. In these files you have to bind OAR al-
located resources to the licence servers to restrict user consumptions to what they asked.
This is very dependant of the licence management.

How can I handle multiple clusters with one OAR?

These are the steps to follow:

1. create a resource property to identify the corresponding cluster (like
“cluster”):

oarproperty -a cluster

(you can see this new property when you use oarnodes)

2. with oarnodesetting you have to fill this field for all resources; for
example:

oarnodesetting -h node42.cluster1.com -p cluster=1

oarnodesetting -h node43.cluster1.com -p cluster=1

oarnodesetting -h node2.cluster2.com -p cluster=2

...

3. Then you have to restrict properties for new job type. So an admis-
sion rule performs this job (this is a SQL syntax to use in a database
interpreter):

INSERT IGNORE INTO admission_rules (rule) VALUES (’

my $cluster_constraint = 0;

if (grep(/^cluster1$/, @{$type_list})){

$cluster_constraint = 1;

}elsif (grep(/^cluster2$/, @{$type_list})){

$cluster_constraint = 2;

}

if ($cluster_constraint > 0){

if ($jobproperties ne ""){

$jobproperties = "($jobproperties) AND cluster = $cluster_constraint";

}else{

$jobproperties = "cluster = $cluster_constraint";

}

print("[ADMISSION RULE] Added automatically cluster resource constraint\\n");

}

’);

64

4. Edit the admission rule which checks the right job types and add
“cluster1” and “cluster2” in.

So when you will use oarsub to submit a “cluster2” job type only resources with the
property “cluster=2” is used. This is the same when you will use the “cluster1” type.

How to configure a more ecological cluster (or how to make some power
consumption economies)?

This feature can be performed with the Dynamic nodes coupling features.
First you have to make sure that you have a command to wake up a computer that

is stopped. For example you can use the WoL (Wake on Lan) feature (generally you
have to right configure the BIOS and add right options to the Linux Ethernet driver;
see “ethtool”).

If you want to enable a node to be woke up the next 12 hours:

((DATE=$(date +%s)+3600*12))

oarnodesetting -h host_name -p cm_availability=$DATE

Otherwise you can disable the wake up of nodes (but not the halt) by:

oarnodesetting -h host_name -p cm_availability=1

If you want to disable the halt on a node (but not the wakeup):

oarnodesetting -h host_name -p cm_availability=2147483647

2147483647 = 2ˆ31 - 1 : we take this value as infinite and it is used to disable the halt
mechanism.

And if you want to disable the halt and the wakeup:

oarnodesetting -h host_name -p cm_availability=0

Note: In the unstable 2.4 OAR version, cm availability has been renamed into avail-
able upto.

Your SCHEDULER NODE MANAGER WAKE UP CMD must be a script that read
node names and translate them into the right wake up command.

So with the right OAR and node configurations you can optimize the power consump-
tion of your cluster (and your air conditioning infrastructure) without drawback for the
users.

Take a look at your cluster occupation and your electricity bill to know if it could be
interesting for you ;-)

65

How to configure temporary UID for each job?

For a better way to handle job processes we introduce the temporary user id feature.
This feature creates a user for each job on assigned nodes. Hence it is possible to clean

temporary files, IPC, every generated processes, ... Furthermore a lot of system features
could be used like bandwidth management (iptables rules on the user id).

To configure this feature, CPUSET must be activated and the tag JOB RESOURCE MANAGER JOB UID TYPE
has to be configured in the oar.conf file. The value is the content of the “type” field into
the resources table. After that you have to add resources in the database with this type
and fill the cpuset field with a unique UID (not used by real users). The maximum
number of concurrent jobs is the number of resources of this type.

For example, if you put this in your oar.onf:

JOB_RESOURCE_MANAGER_PROPERTY_DB_FIELD="cpuset"

JOB_RESOURCE_MANAGER_JOB_UID_TYPE="user"

Then you can add temporary UID:

oarnodesetting -a -h fake -p cpuset=23000 -p type=user

oarnodesetting -a -h fake -p cpuset=23001 -p type=user

oarnodesetting -a -h fake -p cpuset=23002 -p type=user

...

You can put what you want in the place of the hostname (here “fake”).
The drawback of this feature is that users haven’t their UID only their GID.

How to enable jobs to connect to the frontales from the nodes using oarsh?

First you have to install the node part of OAR on the wanted nodes.
After that you have to register the frontales into the database using oarnodesetting

with the “frontal” (for example) type and assigned the desired cpus into the cpuset field;
for example:

oarnodesetting -a -h frontal1 -p type=frontal -p cpuset=0

oarnodesetting -a -h frontal1 -p type=frontal -p cpuset=1

oarnodesetting -a -h frontal2 -p type=frontal -p cpuset=0

...

Thus you will be able to see resources identifier of these resources with oarnodes; try
to type:

oarnodes --sql "type=’frontal’"

Then put this type name (here “frontal”) into the oar.conf file on the OAR server into
the tag SCHEDULER RESOURCES ALWAYS ASSIGNED TYPE.

Notes:

66

� if one of these resources become “Suspected” then the scheduling will stop.

� you can disable this feature with oarnodesetting and put these resources
into the “Absent” state.

A job remains in the “Finishing” state, what can I do?

If you have waited more than a couple of minutes (10mn for example) then something
wrong occurred (frontal has crashed, out of memory, ...).

So you are able to turn manually a job into the “Error” state by typing with the root
user (example with a bash shell):

export OARCONFFILE=/etc/oar/oar.conf

perl -e ’use OAR::IO; $db = OAR::IO::connect(); OAR::IO::set_job_state($db,42,"Error")’

(Replace 42 by your job identifier)

How can I write my own scheduler?

OAR’s scheduler in ocaml

Intro

The main goal of this scheduler is to provide a better scalabily in comparaison to the
schedulers in Perl.Up to now some features are missing see below.

This developement of this scheduler borrows lot of ideas and source codes from perl
oar 2.x schedulers and (a large part of) moldable ocaml oar 1.6 scheduler (thanks re-
spectively to Nicolas Capit and Lionel Eyraud for theirs codes).

Features:

� conservative backfilling

� resources properties matching

� besteffort

� hierarchies

� multiple resource type [TO TEST]

� multiple resource requests (+) [TO TEST]

� time constant guards, [TO TEST]

� suspend/resume,

� job depencies [TO TEST]

� job container

� fairesharing [TO TEST]

� order by on resources [TO FINISH / EVALUATE]

� ALL / BEST / BESTHALF for number of resources by level of hierar-
chy

67

Missing:

� Timesharing (not planned for fisrt public version)

� Placeholder (not planned)

� Extensive test (no yet running on production cluster)

� SCHEDULER TOKEN SCRIPTS support (for legacy licence manage-
ment)

� SCHEDULER AVAILABLE SUSPENDED RESOURCE TYPE (get scheduled jobs
function is ready)

Next:

� Support for null

� test hierarchy construction with different type of resource (exception
raises when a field is missing)

� performance testing

� add always SCHEDULER RESOURCES ALWAYS ASSIGNED TYPE
(is it really needed ?)

� SCHEDULER TOKEN SCRIPTS support (for legacy licence manage-
ment)

� scheduler message (see perl version)

� job error / job message / scheduler message

� need to test multi-resource-type (since >= cbf mb h)

� need to test multi-request with non exclusive resource selection (since
>= cbf mb h)

� errors logging (at least same error support as provide in perl scheduler)

� dump first k ready launchable jobs (for performance /reactivity issue)

� nb asked resource = 0 raise an error (>= cbf mb h)

� unit test

� better compilation process (for unit tests)

ToDo:

� ORDER BY
– performance test

– production test

– ord2init ids, init2ord ids more test

� switch name to kamelot

� test fairsharing

� test unit: better compilation process

� Ounit (cf archive) * test sub intevals

68

Misc:

� With 64 bits machine we can use ocaml’s int with 63 bits instead of
Int64.

Done:

� resource order by support (usable)

� container

� Support of postgresql

� Preliminary performance comparaison (perl version timesharing only
scheduler from oar-server 2.3.4-1 all.deb against cbf mh h). Perl sched-
uler doesn’t seem to scale with number of resources)

� modify itv intersect in Interval / remove itv2str, itvs2str (>= cbf mh h)

� multi-resource-type (since >= cbf mh h) (

� multi-request with non exclusive resource selection (since >= cbf mh h)

Remarks and misc:

� http://martin.jambon.free.fr/ocaml.htm

Bugs:

Debug:

make bc ocamlmktop -I /usr/lib/ocaml/ -o yop str.cma unix.cma ../common/helpers.cmo
../common/interval.cmo ../common/conf.cmo types.cmo ../common/hierarchy.cmo
./simple cbf mb h ct.cmo

ocamlmktop -I /usr/lib/ocaml/ -o yop str.cma unix.cma ../common/helpers.cmo
../common/interval.cmo ../common/conf.cmo types.cmo ../common/hierarchy.cmo
./simple cbf mb h ct.cmo mysql/mysql.cma ./mysql driver.cmo iolib.cmo ./sim-
ple cbf mb h ct oar.cmo

ocamlmktop -I /usr/lib/ocaml/ -o yop str.cma unix.cma ../common/helpers.cmo
../common/interval.cmo ../common/conf.cmo types.cmo ../common/hierarchy.cmo
./simple cbf mb h ct.cmo mysql/mysql.cma ./mysql driver.cmo iolib.cmo

rlwrap ./yop -I ../common -I .

What is the syntax of this documentation?

We are using the RST format from the Docutils project. This syntax is easily readable
and can be converted into HTML, LaTex or XML.

You can find basic informations on http://docutils.sourceforge.net/docs/user/rst/quickref.html

69

http://martin.jambon.free.fr/ocaml.htm
http://docutils.sourceforge.net/
http://docutils.sourceforge.net/docs/user/rst/quickref.html

OAR CHANGELOG

version 2.5.3:

� Add the “Name” field on the main Monika page. This is easier for the
users to find there jobs.

� Add MAX CONCURRENT JOB TERMINATIONS into the oar.conf
ofthe master. This limits the number of concurrent processes launched
by the Almighty when the the jobs finish.

� Bug fix in ssh key feature in oarsub.

� Added --compact, -c option to oarstat (compact view or array jobs)

� Improvements of the API: media upload from html forms, listing of files,
security fixes, add of new configuration options, listing of the scheduled
nodes into jobs, fixed bad reinitialization of the limit parameter... See
OAR-DOCUMENTATION-API-USER for more informations.

version 2.5.2:

� Bugfix: /var/lib/oar/.bash oar was empty due to an error in the com-
mon setup script.

� Bugfix: the PINGCHECKER COMMAND in oar.conf depends now on
%%OARDIR%%.

� Bug #13939: the job resource manager.pl and job resource manager cgroups.pl
now deletes the user files in /tmp, /var/tmp and /dev/shm at the
end of the jobs.

� Bugfix: in oardodo.c, the preprocessed variables was not defined cor-
reclty.

� Finaud: fix race condition when there was a PINGCHECKER error
jsut before another problem. The node became Alive again when the
PINGCHECKER said OK BUT there was another error to resolve.

� Bugfix: The feature CHECK NODES WITH RUNNING JOB=yes never
worked before.

� Speedup monika (X5).

� Monika: Add the conf max cores per line to have several lines if the
number of cores are too big.

� Minor changes into API:
– added cmd output into POST /jobs.

� API: Added GET /select all?query=<query> (read only mode).

� Add the field “array index” into the jobs table. So that resubmit a job
from an array will have the right array index anvironment variable.

� oarstat: order the output by job id.

� Speedup oarnodes.

70

� Fix a spelling error in the oaradmin manpage.

� Bugfix #14122 : the oar-node init.d script wasn’t executing start oar node/stop oar node
during the ’restart’ action.

� Allow the dash character into the --notify “exec:...” oarsub option.

� Remove some old stuffs from the tarball:
– visualization interfaces/{tgoar,accounting,poar};

– scheduler/moldable;

– pbs-oar-lib.

� Fix some licence issues.

version 2.5.1:

� Sources directories reorganized

� New “Phoenix” tool to try to reboot automatically broken nodes (to
setup into /etc/oar/oar phoenix.pl)

� New (experimental!) scheduler written in Ocaml

� Cpusets are activated by default

� Bugfix #11065: oar resource init fix (add a space)

� Bug 10999: memory leak into Hulot when used with postgresql. The
leak has been minimized, but it is still there (DBD::Pg bug)

� Almighty cleans ipcs used by oar on exit

� Bugfix #10641 and #10999 : Hulot is automatically and periodically
restarted

� Feature request #10565: add the possibility to check the aliveness of
the nodes of a job at the end of this one (pingchecker)

� REST API heavily updated: new data structures with paginated results,
desktop computing functions, rspec tests, oaradmin resources manage-
ment, admission rules edition, relative/absolutes uris fixed

� New ruby desktop computing agent using REST API (experimental)

� Experimental testsuite

� Poar: web portal using the REST API (experimental)

� Oaradmin YAML export support for resources creation (for the REST
API)

� Bugfix #10567: enabling to bypass window mechanism of hulot.

� Bugfix #10568: Wake up timeout changing with the number of nodes

� Add in oar.conf the tag “RUNNER SLIDING WINDOW SIZE”: it al-
lows the runner to use a sliding window to launch the bipbip processes
if “DETACH JOB FROM SERVER=1”. This feature avoids the over-
load of the server if plenty of jobs have to be launched at the same
time.

71

� Fix problem when deleting a job in the Suspended state (oarexec was
stopped by a SIGSTOP so it was not able to handle the delete opera-
tion)

� Make the USER SIGNAL feature of oardel multi job independant and
remove the temporary file at the end of the job

� Monika: display if the job is of timesharing type or not
add in the job listing the initial request (is there a reason to not
display it?)

� IoLib: update scheduler priority resources property for timesharing jobs.
So the scheduler will be able to avoid to launch every timesharing
jobs on the same resources (they can be dispatched)

� OAREXEC: unmask SIGHUP and SIGPIPE for user script

� node change state: do not Suspect the first node of a job which was
EXTERMINATED by Leon if the cpuset feature is configured (let do
the job by the cpuset)

� OAREXEC: ESRF detected that sometime oarexec think that he noti-
fied the Almighty with it exit code but nothing was seen on the server.
So try to resend the exit code until oarexec is killed.

� oar Tools: add in notify almighty a check on the print and on the close
of the socket connected to Almighty.

� oaraccounting: --sql is now possible into a “oarstat --accounting” query

� Add more logs to the command “oarnodes -e host” when a node turns
into Suspected

� Execute user commands with /proc/self/oom adj to 15. So the first
processes that will be killed when there is no more memory available
is the user ones. Hence the system will remain up and running and the
user job will finished. Drawback: this file can be changed manually by
the user so if someone knows a method to do the same thing but only
managed by root, we take???

� Bugfix API: quotes where badly escaped into job submission (Ugo.Meda@insa-
rennes.fr)

� Add the possibility to automatically resubmit idempotent job which
ends with an exit code of 99: oarsub -t idempotent “sleep 5; exit 99”

� Bugfix API: Some informations where missing into jobs/details, espe-
cially the scheduled resources.

� API: added support of“param file”value for array job submissions. This
value is a string representing the content of a parameters file. Sample
submission:

{"resource":"/cpu=1", "command":"sleep", "param_file":"60\n90\n30"}

This submits 3 sleep jobs with differents sleep values.

� Remove any reference to gridlibs and gridapi as these components are
obselete

72

mailto:Ugo.Meda@insa-rennes.fr
mailto:Ugo.Meda@insa-rennes.fr

� Add stdout and stderr files of each job in oarstat output.

� API now supports fastcgi (big performance raise!)

� Add “-f” option to oarnodesetting to read hostnames from a file.

� API can get/upload files (GET or POST /media/<file path>)

� Make “X11 forwarding” working even if the user XAUTHORITY envi-
ronment variable does not contain ˜/.Xauthority (GDM issue).

� Add job resource manager cgroups which handles cpuset + other cgroup
features like network packet tagging, IO disk shares, ...

� Bugfix #13351: now oar psql db init is executed with root privileges

� Bugfix #13434: reservation were not handled correctly with the energy
saving feature

� Add cgroups FREEZER feature to the suspend/resume script (bet-
ter than kill SIGSTOP/SIGCONT). This is doable thanks to the new
job resource manager cgroups.

� Implement a new script ’oar-database’ to manage the oar database.
oar mysql init & oar psql init are dropped.

� Huge code reorganisation to allow a better packaging and system inte-
gration

� Drop the oarsub/oarstat 2.3 version that was kept for compatiblity
issues during the 2.4.x branch.

� By default the oar scheduler is now ’oar sched gantt with timesharing and fairsharing’
and the following values has been set in oar.conf: SCHEDULER TIMEOUT
to 30, SCHEDULER NB PROCESSES to 4 and SCHEDULER FAIRSHARING MAX JOB PER USER
to 30

� Add a limitation on the number of concurrent bipbip processes on the
server (for detached jobs).

� Add IPC cleaning to the job resource manager* when there is no other
job of the same user on the nodes.

� make better scheduling behaviour for dependency jobs

� API: added missing stop time into /jobs/details

version 2.4.4:

� oar resource init: bad awk delimiter. There’s a space and if the property
is the first one then there is not a ’,’.

� job suspend: oardo does not exist anymore (long long time ago). Replace
it with oardodo.

� oarsub: when an admission rule died micheline returns an integer and
not an array ref. Now oarsub ends nicely.

� Monika: add a link on each jobid on the node display area.

� sshd config: with nodes with a lot of core, 10 // connections could be
too few

73

version 2.4.3:

� Hulot module now has customizable keepalive feature

� Added a hook to launch a healing command when nodes are suspected
(activate the SUSPECTED HEALING EXEC FILE variable)

� Bugfix #9995: oaraccouting script doesn’t freeze anymore when db is
unreachable.

� Bugfix #9990: prevent from inserting jobs with invalid username (like
an empty username)

� Oarnodecheck improvements: node is not checked if a job is already
running

� New oaradmin option: --auto-offset

� Feature request #10565: add the possibility to check the aliveness of
the nodes of a job at the end of this one (pingchecker)

version 2.4.2:

� New “Hulot” module for intelligent and configurable energy saving

� Bug #9906: fix bad optimization in the gantt lib (so bad scheduling

version 2.4.1:

� Bug #9038: Security flaw in oarsub --notify option

� Bug #9601: Cosystem jobs are no more killed when a resource is set to
Absent

� Fixed some packaging bugs

� API bug fixes in job submission parsing

� Added standby info into oarnodes -s and available upto info into /re-
sources uri of the API

� Bug Grid’5000 #2687 Fix possible crashes of the scheduler.

� Bug fix: with MySQL DB Finaud suspected resources which are not of
the “default” type.

� Signed debian packages (install oar-keyring package)

version 2.4.0:

� Bug #8791: added CHECK NODES WITH RUNNING JOB=no to
prevent from checking occupied nodes

� Fix bug in oarnodesetting command generated by oar resources init
(detect resources)

� Added a --state option to oarstat to only get the status of specified jobs
(optimized query, to allow scripting)

� Added a REST API for OAR and OARGRID

74

� Added JSON support into oarnodes, oarstat and oarsub

� New Makefile adapted to build packages as non-root user

� add the command “oar resources init” to easily detect and initialize the
whole resources of a cluster.

� “oaradmin version” : now retrieve the most recent database schema
number

� Fix rights on the “schema” table in postgresql.

� Bug #7509: fix bug in add micheline subjob for array jobs + jobtypes

� Ctrl-C was not working anymore in oarsub. It seems that the signal
handler does not handle the previous syntax ($SIG = ’qdel’)

� Fix bug in oarsh with the “-l” option

� Bug #7487: bad initialisation of the gnatt for the container jobs.

� Scheduler: move the“delete unnecessary subtrees”directly into“find first hole”.
Thus this is possible to query a job like:

oarsub -I -l nodes=1/core=1+nodes=4/core=2

(no hard separation between each group)

For the same behaviour as before, you can query:
oarsub -I -l {prop=1}/nodes=1/core=1+{prop=2}/nodes=4/core=2

� Bug #7634: test if the resource property value is effectively defined
otherwise print a ’’

� Optional script to take into account cpu/core topology of the nodes at
boot time (to activate inside oarnodesetting ssh)

� Bug #7174: Cleaned default PATH from “./” into oardodo

� Bug #7674: remove the computation of the scheduler priority field for
besteffort jobs from the asynchronous OAR part. Now the value is set
when the jobs are turned into toLaunch state and in Error/Terminated.

� Bug #7691: add --array and --array-param-file options parsing into the
submitted script. Fix also some parsing errors.

� Bug #7962: enable resource property “cm availability” to be manipu-
lated by the oarnodesetting command

� Added the (standby) information to a node state in oarnodes when it’s
state
is Absent and cm availability != 0

� Changed the name of cm availability to available upto which is more
relevant

� add a --maintenance option to oarnodesetting that sets the state of a
resource to Absent and its available upto to 0 if maintenance is on and
resets previous values if maintenance is off.

� added a --signal option to oardel that allow a user to send a signal to
one of his jobs

75

� added a name field in the schema table that will refer to the OAR
version name

� added a table containing scheduler name, script and description

� Bug #8559: Almighty: Moved OAREXEC XXXX management code
out of the queue for immediate action, to prevent potential problems
in case of scheduler timeouts.

� oarnodes, oarstat and the REST API are no more making retry connec-
tions to the database in case of failure, but exit with an error instead.
The retry behavior is left for daemons.

� improved packaging (try to install files in more standard places)

� improved init script for Almighty (into deb and rpm packages)

� fixed performance issue on oarstat (array id index missing)

� fixed performance issue (job id index missing in event log table)

� fixed a performance issue at job submission (optimized a query and
added an index on challenges table) decisions).

version 2.3.5:

� Bug #8139: Drawgantt nil error (Add condition to test the presence of
nil value in resources table.)

� Bug #8416: When a the automatic halt/wakeup feature is enabled then
there was a problem to determine idle nodes.

� Debug a mis-initialization of the Gantt with running jobs in the metasched-
uler (concurrency access to PG database)

version 2.3.4:

� add the command “oar resources init” to easily detect and initialize the
whole resources of a cluster.

� “oaradmin version” : now retrieve the most recent database schema
number

� Fix rights on the “schema” table in postgresql.

� Bug #7509: fix bug in add micheline subjob for array jobs + jobtypes

� Ctrl-C was not working anymore in oarsub. It seems that the signal
handler does not handle the previous syntax ($SIG = ’qdel’)

� Bug #7487: bad initialisation of the gnatt for the container jobs.

� Fix bug in oarsh with the “-l” option

� Bug #7634: test if the resource property value is effectively defined
otherwise print a ’’

� Bug #7674: remove the computation of the scheduler priority field for
besteffort jobs from the asynchronous OAR part. Now the value is set
when the jobs are turned into toLaunch state and in Error/Terminated.

76

� Bug #7691: add --array and --array-param-file options parsing into the
submitted script. Fix also some parsing errors.

� Bug #7962: enable resource property “cm availability” to be manipu-
lated by the oarnodesetting command

version 2.3.3:

� Fix default admission rules: case unsensitive check for properties used
in oarsub

� Add new oaradmin subcommand : oaradmin conf. Useful to edit conf
files and keep changes in a Subversion repository.

� Kill correctly each taktuk command children in case of a timeout.

� New feature: array jobs (option --array) (on oarsub, oarstat oardel,
oarhold and oarresume) and file-based parametric array jobs (oarsub
--array-param-file) /!in this version the DB scheme has changed. If you
want to upgrade your installation from a previous 2.3 release then you
have to execute in your database one of these SQL script (stop OAR
before):

mysql:

DB/mysql_structure_upgrade_2.3.1-2.3.3.sql

postgres:

DB/pg_structure_upgrade_2.3.1-2.3.3.sql

version 2.3.2:

� Change scheduler timeout implementation to schedule the maximum of
jobs.

� Bug #5879: do not show initial request in oarstat when it is not a job
of the user who launched the oarstat command (oar or root).

� Add a --event option to oarnodes and oarstat to display events recorded
for a job or node

� Display reserved resources for a validated waiting reservation, with a
hint in their state

� Fix oarproperty: property names are lowercase

� Fix OAR JOB PROPERTIES FILE: do not display system properties

� Add a new user command: oarprint which allow to pretty print resource
properties of a job

� Debug temporary job UID feature

� Add ’kill -9’ on subprocesses that reached a timeout (avoid Perl to wait
something)

77

� desktop computing feature is now available again. (ex: oarsub -t desk-
top computing date)

� Add versioning feature for admission rules with Subversion

version 2.3.1:

� Add new oarmonitor command. This will permit to monitor OAR jobs
on compute nodes.

� Remove sudo dependency and replace it by the commands “oardo” and
“oardodo”.

� Add possibility to create a temporary user for each jobs on compute
nodes. So you can perform very strong restrictions for each job (ex:
bandwidth restrictions with iptable, memory management, ... every-
thing that can be handled with a user id)

� Debian packaging: Run OAR specific sshd with root privileges (under
heavy load, kernel may be more responsive for root processes...)

� Remove ALLOWED NETWORKS tag in oar.conf (added more com-
plexeity than resolving problems)

� /!change database scheme for the field exit code in the table jobs. Now
oarstat exit code line reflects the right exit code of the user passive job
(before, even when the user script was not launched the exit code was
0 which was BAD)

� /!add DB field initial request in the table jobs that stores the oarsub
line of the user

� Feature Request #4868: Add a parameter to specify what the “nodes”
resource is a synomym for. Network address must be seen as an internal
data and not used.

� Scheduler: add timeout for each job == 1/4 of the remaining scheduler
timeout.

� Bug #4866: now the whole node is Suspected instead of just the par
where there is no job onto. So it is possible to have a job on Suspected
nodes.

� Add job walltime (in seconds) in parameter of prologue and epilogue
on compute nodes.

� oarnodes does not show system properties anymore.

� New feature: container job type now allows to submit inner jobs for a
scheduling within the container job

� Monika refactoring and now in the oar packaging.

� Added a table schema in the db with the field version, reprensenting
the version of the db schema.

� Added a field DB PORT in the oar config file.

� Bug #5518: add right initialization of the job user name.

78

� Add new oaradmin command. This will permit to create resources and
manage admission rules more easily.

� Bug #5692: change source code into a right Perl 5.10 syntax.

version 2.2.12:

� Bug #5239: fix the bug if there are spaces into job name or project

� Fix the bug in Iolib if DEAD SWITCH TIME >0

� Fix a bug in bipbip when calling the cpuset manager to clean jobs in
error

� Bug #5469: fix the bug with reservations and Dead resources

� Bug #5535: checks for reservations made at a same time was wrong.

� New feature: local checks on nodes can be plugged in the oarnodecheck
mechanism. Results can be asynchronously checked from the server
(taktuk ping checker)

� Add 2 new tables to keep track of the scheduling decisions (gantt jobs predictions log
and gantt jobs resources log). This will help debugging scheduling trou-
bles (see SCHEDULER LOG DECISIONS in oar.conf)

� Now reservations are scheduled only once (at submission time). Re-
sources allocated to a reservations are definitively set once the validated
is done and won’t change in next scheduler’s pass.

� Fix DrawGantt to not display besteffort jobs in the future which is
meaningless.

version 2.2.11:

� Fix Debian package dependency on a CGI web server.

� Fix little bug: remove notification (scheduled start time) for Interactive
reservation.

� Fix bug in reservation: take care of the SCHEDULER JOB SECURITY TIME
for reservations to check.

� Fix bug: add a lock around the section which creates and feed the OAR
cpuset.

� Taktuk command line API has changed (we need taktuk >= 3.6).

� Fix extra ’ in the name of output files when using a job name.

� Bug #4740: open the file in oarsub with user privileges (-S option)

� Bug #4787: check if the remote socket is defined (problem of timing
with nmap)

� Feature Request #4874: check system names when renaming properties

� DrawGantt can export charts to be reused to build a global multi-OAR
view (e.g. DrawGridGantt).

� Bug #4990: DrawGantt now uses the database localtime as its time
reference.

79

version 2.2.10:

� Job dependencies: if the required jobs do not have an exit code == 0
and in the state Terminated then the schedulers refuse to schedule this
job.

� Add the possibility to disable the halt command on nodes with cm availability
value.

� Enhance oarsub “-S” option (more #OAR parsed).

� Add the possibility to use oarsh without configuring the CPUSETs (can
be useful for users that don’t want to configure there ssh keys)

version 2.2.9:

� Bug 4225: Dump only 1 data structure when using -X or -Y or -D.

� Bug fix in Finishing sequence (Suspect right nodes).

version 2.2.8:

� Bug 4159: remove unneeded Dump print from oarstat.

� Bug 4158: replace XML::Simple module by XML::Dumper one.

� Bug fix for reservation (recalculate the right walltime).

� Print job dependencies in oarstat.

version 2.2.7:

version 2.2.11:

� Fix Debian package dependency on a CGI web server.

� Fix little bug: remove notification (scheduled start time) for Interactive
reservation.

� Fix bug in reservation: take care of the SCHEDULER JOB SECURITY TIME
for reservations to check.

� Fix bug: add a lock around the section which creates and feed the OAR
cpuset.

� Taktuk command line API has changed (we need taktuk >= 3.6).

� Fix extra ’ in the name of output files when using a job name.

� Bug #4740: open the file in oarsub with user privileges (-S option)

� Bug #4787: check if the remote socket is defined (problem of timing
with nmap)

� Feature Request #4874: check system names when renaming properties

� DrawGantt can export charts to be reused to build a global multi-OAR
view (e.g. DrawGridGantt).

� Bug #4990: DrawGantt now uses the database localtime as its time
reference.

80

version 2.2.10:

� Job dependencies: if the required jobs do not have an exit code == 0
and in the state Terminated then the schedulers refuse to schedule this
job.

� Add the possibility to disable the halt command on nodes with cm availability
value.

� Enhance oarsub “-S” option (more #OAR parsed).

� Add the possibility to use oarsh without configuring the CPUSETs (can
be useful for users that don’t want to configure there ssh keys)

version 2.2.9:

� Bug 4225: Dump only 1 data structure when using -X or -Y or -D.

� Bug fix in Finishing sequence (Suspect right nodes).

version 2.2.8:

� Bug 4159: remove unneeded Dump print from oarstat.

� Bug 4158: replace XML::Simple module by XML::Dumper one.

� Bug fix for reservation (recalculate the right walltime).

� Print job dependencies in oarstat.

version 2.2.7:

� Bug 4106: fix oarsh and oarcp issue with some options (erroneous lead-
ing space).

� Bug 4125: remove exit code data when it is not relevant.

� Fix potential bug when changing asynchronously the state of the jobs
into “Terminated” or “Error”.

version 2.2.6:

� Bug fix: job types was not sent to cpuset manager script anymore.
(border effect from bug 4069 resolution)

version 2.2.5:

� Bug fix: remove user command when oar execute the epilogue script on
the nodes.

� Clean debug and mail messages format.

� Remove bad oarsub syntax from oarsub doc.

� Debug xauth path.

� bug 3995: set project correctly when resubmitting a job

81

� debug ’bash -c’ on Fedora

� bug 4069: reservations with CPUSET ERROR (remove bad hosts and
continue with a right integrity in the database)

� bug 4044: fix free resources query for reservation (get the nearest hole
from the beginning of the reservation)

� bug 4013: now Dead, Suspected and Absent resources have different
colors in drawgantt with a popup on them.

version 2.2.4:

� Redirect third party commands into oar.log (easier to debug).

� Add user info into drawgantt interface.

� Some bug fixes.

version 2.2.3:

� Debug prologue and epilogue when oarexec receives a signal.

version 2.2.2:

� Switch nice value of the user processes into 0 in oarsh shell (in case of
sshd was launched with a different priority).

� debug taktuk zombies in pingchecker and oar Tools

version 2.2.1:

� install the “allow clasic ssh” feature by default

� debug DB installer

version 2.2:

� oar server proepilogue.pl: can be used for server prologue and epilogue
to authorize users to access to nodes that are completely allocated by
OAR. If the whole node is assigned then it kills all jobs from the user
if all cpus are assigned.

� the same thing can be done with cpuset manager PAM.pl as the script
used to configure the cpuset. More efficent if cpusets are configured.

� debug cm availability feature to switch on and off nodes automatically
depending on waiting jobs.

� reservations now take care of cm availability field

82

version 2.1.0:

� add “oarcp” command to help the users to copy files using oarsh.

� add sudo configuration to deal with bash. Now oarsub and oarsh have
the same behaviour as ssh (the bash configuration files are loaded cor-
rectly)

� bug fix in drawgantt (loose jobs after submission of a moldable one)

� add SCHEDULER RESOURCES ALWAYS ASSIGNED TYPE into oar.conf.
Thus admin can add some resources for each jobs (like frontale node)

� add possibility to use taktuk to check the aliveness of the nodes

� %jobid% is now replaced in stdout and stderr file names by the effective
job id

� change interface to shu down or wake up nodes automatically (now the
node list is read on STDIN)

� add OARSUB FORCE JOB KEY in oar.conf. It says to create a job
ssh key by default for each job.

� %jobid% is now replaced in the ssh job key name (oarsub -k ...).

� add NODE FILE DB FIELD DISTINCT VALUES in oar.conf that en-
ables the admin to configure the generated containt of the OAR NODE FILE

� change ssh job key oarsub options behaviour

� add options “--reinitialize” and “--delete-before” to the oaraccounting
command

� cpuset are now stored in /dev/cpuset/oar

� debian packaging: configure and launch a specific sshd for the user oar

� use a file descriptor to send the node list --> able to handle a very large
amount of nodes

� every config files are now in /etc/oar/

� oardel can add a besteffort type to jobs and vis versa

version 2.0.2:

� add warnings and exit code to oarnodesetting when there is a bad node
name or resource number

� change package version

� change default behaviour for the cpuset manager.pl (more portable)

� enable a user to use the same ssh key for several jobs (at his own risk!)

� add node hostnames in oarstat -f

� add --accounting and -u options in oarstat

� bug fix on index fields in the database (syncro): bug 2020

� bug fix about server pro/epilogue: bug 2022

� change the default output of oarstat. Now it is usable: bug 1875

83

� remove keys in authorized keys of oar (on the nodes) that do not cor-
respond to an active cpuset (clean after a reboot)

� reread oar.conf after each database connection tries

� add support for X11 forwarding in oarsub -I and -C

� debug mysql initialization script in debian package

� add a variable in oarsh for the default options of ssh to use (more
useful to change if the ssh version installed does not handle one of
these options)

� read oar.conf in oarsh (so admin can more easily change options in this
script)

� add support for X11 forwarding via oarsh

� change variable for oarsh: OARSH JOB ID --> OAR JOB ID

version 2.0.0:

� Now, with the ability to declare any type of resources like licences,
VLAN, IP range, computing resources must have the type default and
a network address not null.

� Possibility to declare associated resources like licences, IP ranges, ...
and to reserve them like others.

� Now you can connect to your jobs (not only for reservations).

� Add “cosystem” job type (execute and do nothing for these jobs).

� New scheduler : “oar sched gantt with timesharing”. You can specify
jobs with the type “timesharing” that indicates that this scheduler can
launch more than 1 job on a resource at a time. It is possible to restrict
this feature with words “user and name”. For example, ’-t timeshar-
ing=user,name’ indicates that only a job from the same user with the
same name can be launched in the same time than it.

� Add PostGresSQL support. So there is a choice to make between MySQL
and PostgresSQL.

� New approach for the scheduling : administrators have to insert into
the databases descriptions about resources and not nodes. Resources
have a network address (physical node) and properties. For example, if
you have dual-processor, then you can create 2 different resources with
the same natwork address but with 2 different processor names.

� The scheduler can now handle resource properties in a hierarchical man-
ner. Thus, for example, you can do “oarsub -l /switch=1/cpu=5” which
submit a job on 5 processors on the same switch.

� Add a signal handler in oarexec and propagate this signal to the user
process.

� Support ’#OAR -p ...’ options in user script.

� Add in oar.conf:

84

– DB BASE PASSWD RO : for security issues, it is possible
to execute request with parts specified by users with a read
only account (like “-p” option).

– OARSUB DEFAULT RESOURCES : when nothing is spec-
ified with the oarsub command then OAR takes this de-
fault resource description.

– OAREXEC DEBUG MODE : turn on or off debug mode
in oarexec (create /tmp/oar/oar.log on nodes).

– FINAUD FREQUENCY : indicates the frequency when
OAR launchs Finaud (search dead nodes).

– SCHEDULER TIMEOUT : indicates to the scheduler the
amount of time after what it must end itself.

– SCHEDULER JOB SECURITY TIME : time between each
job.

– DEAD SWITCH TIME : after this time Absent and Sus-
pected resources are turned on the Dead state.

– PROLOGUE EPILOGUE TIMEOUT : the possibility to
specify a different timeout for prologue and epilogue (PRO-
LOGUE EPILOGUE TIMEOUT).

– PROLOGUE EXEC FILE : you can specify the path of
the prologue script executed on nodes.

– EPILOGUE EXEC FILE : you can specify the path of the
epilogue script executed on nodes.

– GENERIC COMMAND : a specific script may be used
instead of ping to check aliveness of nodes. The script must
return bad nodes on STDERR (1 line for a bad node and
it must have exactly the same name that OAR has given
in argument of the command).

– JOBDEL SOFTWALLTIME : time after a normal frag
that the system waits to retry to frag the job.

– JOBDEL WALLTIME : time after a normal frag that the
system waits before to delete the job arbitrary and suspects
nodes.

– LOG FILE : specify the path of OAR log file (default :
/var/log/oar.log).

� Add wait() in pingchecker to avoid zombies.

� Better code modularization.

� Remove node install part to launch jobs. So it is easier to upgrade from
one version to an other (oarnodesetting must already be installed on
each nodes if we want to use it).

� Users can specify a method to be notified (mail or script).

85

� Add cpuset support

� Add prologue and epilogue script to be executed on the OAR server
before and after launching a job.

� Add dependancy support between jobs (“-a” option in oarsub).

� In oarsub you can specify the launching directory (“-d” option).

� In oarsub you can specify a job name (“-n” option).

� In oarsub you can specify stdout and stderr file names.

� User can resubmit a job (option “--resubmit” in oarsub).

� It is possible to specify a read only database account and it will be used
to evaluate SQL properties given by the user with the oarsub command
(more scecure).

� Add possibility to order assigned resources with their properties by the
scheduler. So you can privilege some resources than others (SCHED-
ULER RESOURCE ORDER tag in oar.conf file)

� a command can be specified to switch off idle nodes (SCHEDULER NODE MANAGER SLEEP CMD,
SCHEDULER NODE MANAGER IDLE TIME, SCHEDULER NODE MANAGER SLEEP TIME
in oar.conf)

� a command can be specified to switch on nodes in the Absent state
according to the resource property cm availability in the table resources
(SCHEDULER NODE MANAGER WAKE UP CMD in oar.conf).

� if a job goes in Error state and this is not its fault then OAR will
resubmit this one.

OAR Archives

There are several mini-projects for and around OAR that has been done since the be-
ginning. Some of them are not currently used or are no more relevant. To keep a trace
for memories and for the possibility to reuse them if needed, we have created a branche
’archives’ in the OAR source repository to keep them. Here are the list of them.

86

module Accounting

desktop computing

drmaa-c

moldable

ocaml-schedulers

poar

poar-proto

testsuite

tgoar

87

	OAR capabilities
	Installing the OAR batch system
	Overview
	Computing nodes
	Installation from the packages
	Installation from the tarball
	Configuration
	oar node ssh access
	Init.d scripts

	Server node
	Installation from the packages
	Installation from the tarball
	Configuration
	The oar database
	Init.d scripts
	Adding resources to the system

	Notes
	Security issues
	PostgreSQL : autovacuum
	PostgreSQL : authentication
	About X11 usage in OAR
	Using Taktuk
	CPUSET feature
	Energy saving
	Disabling SELinux
	Intel cpuset id issue
	Other issues

	Frontend nodes
	Installation from the packages
	Installation from the tarball
	Configuration
	Coherent configuration files between server node and user nodes

	OAR RESTful API Installation
	From the packaging
	From the sources
	Configuration

	Visualization node
	Description
	Installation from the packages
	Installation from the tarball
	Configuration

	Further informations

	Security aspects in OAR
	Administrator commands
	oarproperty
	oarnodesetting
	oaradmin
	oarremoveresource
	oaraccounting
	oarnotify
	oarmonitor

	Database scheme
	accounting
	admission_rules
	event_logs
	event_log_hostnames
	files
	frag_jobs
	gantt_jobs_resources
	gantt_jobs_resources_visu
	gantt_jobs_predictions
	gantt_jobs_predictions_visu
	jobs
	job_dependencies
	moldable_job_descriptions
	job_resource_groups
	job_resource_descriptions
	job_state_logs
	job_types
	resources
	resource_logs
	assigned_resources
	queues
	challenges

	Configuration file
	Modules descriptions
	Almighty
	Sarko
	Judas
	Leon
	Runner
	NodeChangeState
	Scheduler
	oar_sched_gantt_with_timesharing
	oar_sched_gantt_with_timesharing_and_fairsharing

	Hulot

	Internal mechanisms
	Job execution
	Scheduling

	FAQ - ADMIN
	Release policy
	What means the error ``Bad configuration option: PermitLocalCommand'' when I am using oarsh?
	How to manage start/stop of the nodes?
	How can I manage scheduling queues?
	How can I handle licence tokens?
	How can I handle multiple clusters with one OAR?
	How to configure a more ecological cluster (or how to make some power consumption economies)?
	How to configure temporary UID for each job?
	How to enable jobs to connect to the frontales from the nodes using oarsh?
	A job remains in the ``Finishing'' state, what can I do?
	How can I write my own scheduler?

	OAR's scheduler in ocaml
	Intro
	Features:
	Missing:
	Next:
	ToDo:
	Misc:
	Done:
	Remarks and misc:
	Bugs:
	Debug:
	What is the syntax of this documentation?

	OAR CHANGELOG
	version 2.5.3:
	version 2.5.2:
	version 2.5.1:
	version 2.4.4:
	version 2.4.3:
	version 2.4.2:
	version 2.4.1:
	version 2.4.0:
	version 2.3.5:
	version 2.3.4:
	version 2.3.3:
	version 2.3.2:
	version 2.3.1:
	version 2.2.12:
	version 2.2.11:
	version 2.2.10:
	version 2.2.9:
	version 2.2.8:
	version 2.2.7:
	version 2.2.11:
	version 2.2.10:
	version 2.2.9:
	version 2.2.8:
	version 2.2.7:
	version 2.2.6:
	version 2.2.5:
	version 2.2.4:
	version 2.2.3:
	version 2.2.2:
	version 2.2.1:
	version 2.2:
	version 2.1.0:
	version 2.0.2:
	version 2.0.0:

	OAR Archives
	module Accounting
	desktop_computing
	drmaa-c
	moldable
	ocaml-schedulers
	poar
	poar-proto
	testsuite
	tgoar

