
OAR Documentation - Admin Guide

Authors: Capit Nicolas, Emeras Joseph

Address: Laboratoire d’Informatique de Grenoble Bat. ENSIMAG - an-
tenne de Montbonnot ZIRST 51, avenue Jean Kuntzmann 38330
MONTBONNOT SAINT MARTIN

Contact: nicolas.capit@imag.fr, joseph.emeras@imag.fr

Authors: LIG laboratory

Organization: LIG laboratory

Status: Stable

Copyright: licenced under the GNU GENERAL PUBLIC LICENSE

Dedication: For administrators.

Abstract: OAR is a resource manager (or batch scheduler) for large clus-
ters. By it’s functionnalities, it’s near of PBS, LSF, CCS and Condor.
It’s suitable for productive plateforms and research experiments.

BE CAREFULL : THIS DOCUMENTATION IS FOR OAR >= 2.3.0
PDF version : OAR-DOCUMENTATION-ADMIN.pdf

Table of Contents
1 OAR capabilities 2

1

mailto:nicolas.capit@imag.fr
mailto:joseph.emeras@imag.fr
OAR-DOCUMENTATION-ADMIN.pdf

2 Installing the OAR batch system 3
2.1 Requirements . 3
2.2 Configuration of the cluster . 4
2.3 CPUSET installation . 7

2.3.1 What are “oarsh” and “oarsh_shell” scripts ? 7
2.3.2 CPUSET definition . 7
2.3.3 OARSH . 8
2.3.4 OARSH_SHELL . 8
2.3.5 Important notes . 8

2.4 Using Taktuk . 9
2.5 Visualization tools installation . 10
2.6 Debian packages . 10
2.7 Starting . 10
2.8 Energy saving . 11
2.9 Further informations . 11

3 Security aspects in OAR 11

4 Administrator commands 13
4.1 oarproperty . 13
4.2 oarnodesetting . 13
4.3 oaradmin . 13
4.4 oarremoveresource . 15
4.5 oaraccounting . 15
4.6 oarnotify . 15
4.7 oarmonitor . 15

5 Database scheme 16
5.1 accounting . 16
5.2 admission_rules . 17
5.3 event_logs . 19
5.4 event_log_hostnames . 21
5.5 files . 21
5.6 frag_jobs . 22
5.7 gantt_jobs_resources . 22
5.8 gantt_jobs_resources_visu . 22
5.9 gantt_jobs_predictions . 23
5.10 gantt_jobs_predictions_visu . 23
5.11 jobs . 23
5.12 job_dependencies . 25
5.13 moldable_job_descriptions . 26
5.14 job_resource_groups . 26
5.15 job_resource_descriptions . 26
5.16 job_state_logs . 27
5.17 job_types . 27
5.18 resources . 28
5.19 resource_logs . 29
5.20 assigned_resources . 30
5.21 queues . 30
5.22 challenges . 30

2

6 Configuration file 31

7 Modules descriptions 36
7.1 Almighty . 36
7.2 Sarko . 41
7.3 Judas . 41
7.4 Leon . 41
7.5 Runner . 42
7.6 NodeChangeState . 44
7.7 Scheduler . 45

7.7.1 oar_sched_gantt_with_timesharing 45
7.7.2 oar_sched_gantt_with_timesharing_and_fairsharing 45

7.8 Hulot . 46

8 Internal mechanisms 51
8.1 Job execution . 51
8.2 Scheduling . 52

9 FAQ - ADMIN 52
9.1 Release policy . 52
9.2 What means the error “Bad configuration option: PermitLocalCom-

mand” when I am using oarsh? . 53
9.3 How to manage start/stop of the nodes? 53
9.4 How can I manage scheduling queues? 53
9.5 How can I handle licence tokens? . 54
9.6 How can I handle multiple clusters with one OAR? 54
9.7 How to configure a more ecological cluster (or how to make some power

consumption economies)? . 55
9.8 How to configure temporary UID for each job? 56
9.9 How to enable jobs to connect to the frontales from the nodes using oarsh? 57
9.10 A job remains in the “Finishing” state, what can I do? 57
9.11 How can I write my own scheduler? 57
9.12 What is the syntax of this documentation? 58

10 OAR CHANGELOG 58
10.1 next version . 58
10.2 version 2.4.7: . 58
10.3 version 2.4.6: . 58
10.4 version 2.4.5: . 59
10.5 version 2.4.4: . 59
10.6 version 2.4.3: . 59
10.7 version 2.4.2: . 60
10.8 version 2.4.1: . 60
10.9 version 2.4.0: . 60
10.10 version 2.3.5: . 62
10.11 version 2.3.4: . 62
10.12 version 2.3.3: . 62
10.13 version 2.3.2: . 63
10.14 version 2.3.1: . 63
10.15 version 2.2.12: . 64

3

10.16 version 2.2.11: . 65
10.17 version 2.2.10: . 65
10.18 version 2.2.9: . 65
10.19 version 2.2.8: . 65
10.20 version 2.2.7: . 66
10.21 version 2.2.11: . 66
10.22 version 2.2.10: . 66
10.23 version 2.2.9: . 66
10.24 version 2.2.8: . 66
10.25 version 2.2.7: . 67
10.26 version 2.2.6: . 67
10.27 version 2.2.5: . 67
10.28 version 2.2.4: . 67
10.29 version 2.2.3: . 67
10.30 version 2.2.2: . 67
10.31 version 2.2.1: . 68
10.32 version 2.2: . 68
10.33 version 2.1.0: . 68
10.34 version 2.0.2: . 69
10.35 version 2.0.0: . 69

1 OAR capabilities
Oar is an opensource batch scheduler which provides a simple and flexible exploitation
of a cluster.

It manages resources of clusters as a traditional batch scheduler (as PBS / Torque /
LSF / SGE). In other words, it doesn’t execute your job on the resources but manages
them (reservation, acces granting) in order to allow you to connect these resources and
use them.

Its design is based on high level tools:

∙ relational database engine MySQL or PostgreSQL,

∙ scripting language Perl,

∙ confinement system mechanism cpuset,

∙ scalable exploiting tool Taktuk.

It is flexible enough to be suitable for production clusters and research experiments.
It currently manages over than 5000 nodes and has executed more than 5 million jobs.

OAR advantages:

∙ No specific daemon on nodes.

∙ No dependence on specific computing libraries like MPI. We support all
sort of parallel user applications.

∙ Upgrades are made on the servers, nothing to do on computing nodes.

∙ CPUSET (2.6 linux kernel) integration which restricts the jobs on assigned
resources (also useful to clean completely a job, even parallel jobs).

4

∙ All administration tasks are performed with the taktuk command (a large
scale remote execution deployment): http://taktuk.gforge.inria.fr/.

∙ Hierarchical resource requests (handle heterogeneous clusters).

∙ Gantt scheduling (so you can visualize the internal scheduler decisions).

∙ Full or partial time-sharing.

∙ Checkpoint/resubmit.

∙ Licences servers management support.

∙ Best effort jobs : if another job wants the same resources then it is deleted
automatically (useful to execute programs like SETI@home).

∙ Environment deployment support (Kadeploy): http://kadeploy.imag.fr/.

Other more common features:

∙ Batch and Interactive jobs.

∙ Admission rules.

∙ Walltime.

∙ Multi-schedulers support.

∙ Multi-queues with priority.

∙ Backfilling.

∙ First-Fit Scheduler.

∙ Reservation.

∙ Support of moldable tasks.

∙ Check compute nodes.

∙ Epilogue/Prologue scripts.

∙ Support of dynamic nodes.

∙ Logging/Accounting.

∙ Suspend/resume jobs.

2 Installing the OAR batch system
What do you need?

∙ a cluster

∙ to be an admin of this cluster

∙ to get the install package of OAR (normally you have already done that)

2.1 Requirements
There a three kinds of nodes, each requiring a specific software configuration.

These are :

∙ the server node, which will hold all of OAR “smartness” ;

∙ the login nodes, on which you will be allowed to login, then reserve
some computational nodes ;

5

http://taktuk.gforge.inria.fr/
http://kadeploy.imag.fr/

∙ the computational nodes (a.k.a. the nodes), on which the jobs will
run.

On every nodes (server, login, computational), the following packages must be
installed :

∙ Perl

∙ Perl-base

∙ openssh (server and client)

On the OAR server and on the login nodes, the following packages must be in-
stalled:

∙ Perl-Mysql | Perl-PostgreSQL

∙ Perl-DBI

∙ MySQL | PostgreSQL

∙ libmysql | libpostgres

From now on, we will suppose all the packages are correctly installed and config-
ured and the database is started.

2.2 Configuration of the cluster
The following steps have to be done, prior to installing OAR:

∙ add a user named “oar” in the group “oar” on every node

∙ let the user “oar” connect through ssh from any node to any node
WITHOUT password. To achieve this, here is some standard proce-
dure for OpenSSH:

– create a set of ssh keys for the user “oar” with ssh-
keygen (for instance ’id_dsa.pub’ and ’id_dsa’)

– copy these keys on each node of the cluster in the “.ssh”
folder of the user “oar”

– append the contents of ’id_dsa.pub’ to the file “~/.ssh/authorized_keys”
– the default oar ssh public key in the authorized_keys

file must be tagged for the security. So this prefix must
be set in front of the public key:
environment="OAR_KEY=1"

So if the oar public key is:

ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEAsatv3+4HjaP91oLdZu68JVvYcHKl/u5avb4b
zkc3ut3W6FXz5qZYknDW99/R7VYaaZ+VFG5vt6ZCZvJReyM268p00D00ic4fuDwZADpgZMPW
FOGHJM5ga8cTPaczg88XMUx/cVGfnm1LaK5nSrymHZdMsxXr

then it must be switched into:

environment="OAR_KEY=1" ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEAsatv3+4HjaP9
1oLdZu68JVvYcHKl/u5avb4bzkc3ut3W6FXz5qZYknDW99/R7VYaaZ+VFG5vt6ZCZvJReyM2
68p00D00ic4fuDwZADpgZMPWFOGHJM5ga8cTPaczg88XMUx/cVGfnm1LaK5nSrymHZdMsxXr

6

– in “~/.ssh/config” add the lines:
Host *

ForwardX11 no
StrictHostKeyChecking no
PasswordAuthentication no
AddressFamily inet

– test the ssh connection between (every) two nodes :
there should not be any prompt.

There are three different flavors of installation :

∙ server: install the daemon which must be running on the server

∙ user: install all the tools needed to submit and manage jobs for the
users (oarsub, oarstat, oarnodes, ...)

∙ node: install the tools for a computing node (check that the oar user
ssh key is prefixed by environment=“OAR_KEY=1”, see Impor-
tant notes)

The installation is straightforward:

∙ become root

∙ go to OAR source repository

∙ You can set Makefile variables in the command line to suit your con-
figuration (change “OARHOMEDIR” to the home of your user oar
and “PREFIX” where you want to copy all OAR files).

∙ run make <module> [module] ...
where module := { server-install | user-install | node-install | doc-install | debian-package }

OPTIONS := { OARHOMEDIR | OARCONFDIR | OARUSER
| PREFIX | MANDIR | OARDIR | BINDIR | SBINDIR |
DOCDIR }

∙ Edit /etc/oar/oar.conf file to match your cluster configuration.

∙ Make sure that the PATH environment variable contains $PREFIX/$BINDIR
of your installation (default is /usr/local/bin).

Initialization of OAR database (MySQL) is achieved using oar_mysql_db_init script
provided with the server module installation and located in $PREFIX/sbin (/usr/local/sbin
in default Makefile).

If you want to use a postgres SQL server then you can call the oar_psql_db_init.pl
script that will do all the users and tables creation for you. If you want to do this by
yourself, you have to add a new user which can connect on a new oar database (use
the commands createdb and createuser). After that, you have to authorize network
connections on the postgresql server in the postgresql.conf (uncomment tcpip_socket
= true). Then you can import the database scheme stored in oar_postgres.sql (use psql
and the SQL command “\i”).

Here is an example to perform all the potgres database install(there is certainly
other ways to do that):

sudo su - postgres

7

createuser -P
Enter name of role to add: oar
Enter password for new role:
Enter it again:
Shall the new role be a superuser? (y/n) n
Shall the new role be allowed to create databases? (y/n) n
Shall the new role be allowed to create more new roles? (y/n) n
CREATE ROLE

createuser -P
Enter name of role to add: oar_ro
Enter password for new role:
Enter it again:
Shall the new role be a superuser? (y/n) n
Shall the new role be allowed to create databases? (y/n) n
Shall the new

createdb oar

sudo vi /etc/postgresql/8.1/main/pg_hba.conf
host oar oar_ro 127.0.0.1 255.255.255.255 md5
host oar oar 127.0.0.1 255.255.255.255 md5

Be careful to put these two lines at the top of the file or it won’t work

sudo /etc/init.d/postgresql-8.1 reload

psql -Uoar -h127.0.0.1 oar
\i /usr/lib/oar/pg_structure.sql
\i /usr/lib/oar/pg_default_admission_rules.sql
\i /usr/lib/oar/default_data.sql
\q

psql oar
GRANT ALL PRIVILEGES ON schema,accounting,admission_rules,assigned_resources,
challenges,event_log_hostnames,event_logs,files,frag_jobs,gantt_jobs_predictions,
gantt_jobs_predictions_visu,gantt_jobs_resources,gantt_jobs_resources_visu,
job_dependencies,job_resource_descriptions,job_resource_groups,
job_state_logs,job_types,jobs,moldable_job_descriptions,queues,
resource_logs,resources,admission_rules_id_seq,event_logs_event_id_seq,
files_file_id_seq,job_resource_groups_res_group_id_seq,
job_state_logs_job_state_log_id_seq,job_types_job_type_id_seq,
moldable_job_descriptions_moldable_id_seq,resource_logs_resource_log_id_seq,
resources_resource_id_seq,jobs_job_id_seq TO oar;

GRANT SELECT ON schema,accounting,admission_rules,assigned_resources,event_log_hostnames,
event_logs,files,frag_jobs,gantt_jobs_predictions,gantt_jobs_predictions_visu,
gantt_jobs_resources,gantt_jobs_resources_visu,job_dependencies,
job_resource_descriptions,job_resource_groups,job_state_logs,job_types,
jobs,moldable_job_descriptions,queues,resource_logs,resources,admission_rules_id_seq,
event_logs_event_id_seq,files_file_id_seq,job_resource_groups_res_group_id_seq,

8

job_state_logs_job_state_log_id_seq,job_types_job_type_id_seq,
moldable_job_descriptions_moldable_id_seq,resource_logs_resource_log_id_seq,
resources_resource_id_seq,jobs_job_id_seq TO oar_ro;
\q

You can test it with
psql oar oar_ro -h127.0.0.1

IMPORTANT: be sure to activate the “autovacuum” feature in the “postgresql.conf”
file (OAR creates and deletes a lot of records and this setting cleans the postgres
database from unneeded records). Better performances are achieved by adding the
vacuum into the crontab of the postgres user like this (“crontab -e” to edit and add the
line)

postgres$ crontab -l
m h dom mon dow command
02 02 * * * vacuumdb -a -f -z

For more information about postgresql, go to http://www.postgresql.org/.
Security issue: For security reasons it is hardly recommended to configure a read

only account for the OAR database (like the above example). Thus you will be able to
add this data in DB_BASE_LOGIN_RO and DB_BASE_PASSWD_RO in oar.conf.

Note: The same machine may host several or even all modules.
Note about X11: The easiest and scalable way to use X11 application on cluster

nodes is to open X11 ports and set the right DISPLAY environment variable by hand.
Otherwise users can use X11 forwarding via ssh to access cluster frontal. After that
you must configure ssh server on this frontal with

X11Forwarding yes
X11UseLocalhost no

With this configuration, users can launch X11 applications after a ’oarsub -I’ on the
given node.

2.3 CPUSET installation
2.3.1 What are “oarsh” and “oarsh_shell” scripts ?

“oarsh” and “oarsh_shell” are two scripts that can restrict user processes to stay in the
same cpuset on all nodes.

This feature is very usefull to restrict processor consumption on multiprocessors
computers and to kill all processes of a same OAR job on several nodes.

If you want to configure this feature into OAR then take a look also in CPUSET
and resources.

2.3.2 CPUSET definition

CPUSET is a module integrated in the Linux kernel since 2.6.x. In the kernel docu-
mentation, you can read:

Cpusets provide a mechanism for assigning a set of CPUs and Memory
Nodes to a set of tasks.

9

http://www.postgresql.org/

Cpusets constrain the CPU and Memory placement of tasks to only
the resources within a tasks current cpuset. They form a nested
hierarchy visible in a virtual file system. These are the essential
hooks, beyond what is already present, required to manage dynamic
job placement on large systems.

Each task has a pointer to a cpuset. Multiple tasks may reference
the same cpuset. Requests by a task, using the sched_setaffinity(2)
system call to include CPUs in its CPU affinity mask, and using the
mbind(2) and set_mempolicy(2) system calls to include Memory Nodes
in its memory policy, are both filtered through that tasks cpuset,
filtering out any CPUs or Memory Nodes not in that cpuset. The
scheduler will not schedule a task on a CPU that is not allowed in
its cpus_allowed vector, and the kernel page allocator will not
allocate a page on a node that is not allowed in the requesting tasks
mems_allowed vector.

If a cpuset is cpu or mem exclusive, no other cpuset, other than a direct
ancestor or descendent, may share any of the same CPUs or Memory Nodes.
A cpuset that is cpu exclusive has a sched domain associated with it.
The sched domain consists of all cpus in the current cpuset that are not
part of any exclusive child cpusets.
This ensures that the scheduler load balacing code only balances
against the cpus that are in the sched domain as defined above and not
all of the cpus in the system. This removes any overhead due to
load balancing code trying to pull tasks outside of the cpu exclusive
cpuset only to be prevented by the tasks’ cpus_allowed mask.

A cpuset that is mem_exclusive restricts kernel allocations for
page, buffer and other data commonly shared by the kernel across
multiple users. All cpusets, whether mem_exclusive or not, restrict
allocations of memory for user space. This enables configuring a
system so that several independent jobs can share common kernel
data, such as file system pages, while isolating each jobs user
allocation in its own cpuset. To do this, construct a large
mem_exclusive cpuset to hold all the jobs, and construct child,
non-mem_exclusive cpusets for each individual job. Only a small
amount of typical kernel memory, such as requests from interrupt
handlers, is allowed to be taken outside even a mem_exclusive cpuset.

User level code may create and destroy cpusets by name in the cpuset
virtual file system, manage the attributes and permissions of these
cpusets and which CPUs and Memory Nodes are assigned to each cpuset,
specify and query to which cpuset a task is assigned, and list the
task pids assigned to a cpuset.

10

2.3.3 OARSH

“oarsh” is a wrapper around the “ssh” command (tested with openSSH). Its goal is to
propagate two environment variables:

∙ OAR_CPUSET : The name of the OAR job cpuset

∙ OAR_JOB_USER : The name of the user corresponding to the job

So “oarsh” must be run by oar and a simple user must run it via the “sudowrap-
per” script to become oar. In this way each cluster user who can execute “oarsh” via
“sudowrapper” can connect himself on each cluster nodes (if oarsh is installed every-
where).

2.3.4 OARSH_SHELL

“oarsh_shell” must be the shell of the oar user on each nodes where you want oarsh
to work. This script takes “OAR_CPUSET” and “OAR_JOB_USER” environment
variables and adds its PID in OAR_CPUSET cpuset. Then it searches user shell and
home and executes the right command (like ssh).

2.3.5 Important notes

∙ On each node you must add in the SSH server configuration file (you
have to install an openssh server with a version >= 3.9):

AcceptEnv OAR_CPUSET OAR_JOB_USER
PermitUserEnvironment yes
UseLogin no
AllowUsers oar

In Debian the file is “/etc/ssh/sshd_config”.
AllowUsers restricts the users which can connect directly on the nodes.
With cpuset enabled, only the user oar is needed but other logins can
be added with this syntax(it is safer):

AllowUsers oar admin1 admin2 ...

After that you have to restart the SSH server.

∙ the command “scp” can be used with oarsh. The syntax is:

scp -S /path/to/oarsh ...

∙ If you want to use oarsh from the user frontale, you can. You have
to define the environment OAR_JOB_ID and then launch oarsh on
a node used by your OAR job. This feature works only where the
oarstat command is configured:

OAR_JOB_ID=42 oarsh node12

or:

export OAR_JOB_ID=42
oarsh node12

This command gives you a shell on the “node12” from the OAR job
42.
You can also copy files with a syntax like:

11

OAR_JOB_ID=42 scp -S /path/to/oarsh ...

∙ You can restrict the use of oarsh with the sudo configuration:

%oarsh ALL=(oar) NOPASSWD: /path/to/oarsh

Here only users from oarsh group can execute oarsh

∙ You can disable the cpuset security mechanism by setting the OARSH_BYPASS_WHOLE_SECURITY
field to 1 in your oar.conf file. WARNING: this is a critical function-
ality (this is only useful if users want to have a command to connect
on every nodes without taking care of their ssh configuration and act
like a ssh).

2.4 Using Taktuk
If you want to use taktuk to manage remote admnistration commands, you have to
install it. You can find information about taktuk from its website: http://taktuk.gforge.
inria.fr. Then, you have to edit your oar configuration file and to fill in the different
related parameters:

∙ TAKTUK_CMD (the path to the taktuk command)

∙ PINGCHECKER_TAKTUK_ARG_COMMAND (the command used
to check resources states)

∙ SCHEDULER_NODE_MANAGER_SLEEP_CMD (command used
for halting nodes)

2.5 Visualization tools installation
There are two different tools. One, named Monika, displays the current cluster state
with all active and waiting jobs. The other, named drawgantt, displays node occupation
in a lapse of time. These tools are CGI scripts and generate HTML pages.

You can install these in this way: drawgantt:

∙ Make sure you installed “ruby”, “libdbd-mysql-ruby” or “libdbd-
pg-ruby” and “libgd-ruby1.8” packages.

∙ Copy “drawgantt.cgi” and “drawgantt.conf” in the CGI folder of
your web server (ex: /usr/lib/cgi-bin/ for Debian).

∙ Copy all icons and javascript files in a folder that web server can
find them (ex: /var/www/oar/Icons and /var/www/oar/Icons).

∙ Make sure that these files can be read by the web server user.
∙ Edit “drawgantt.conf” and change tags to fit your configuration.

Monika:

∙ The packages “libdbd-mysql-perl” or “libdbd-pg-perl” and “perl-
AppConfig” are required.

∙ Read INSTALL file in the monika repository.

12

http://taktuk.gforge.inria.fr
http://taktuk.gforge.inria.fr

2.6 Debian packages
OAR is also released under Debian packages (or Ubuntu). You can find them at https:
//gforge.inria.fr/frs/?group_id=125.

If you want to add it as a new source in your /etc/apt/sources.list then add the line:

deb http://oar.imag.fr/download ./

IMPORTANT : if you want to use the cpuset features then you have to install the
oar-node package on computing nodes otherwise this is not mandatory. But if this is
performed then the configuration of Important notes must be set on these nodes.

After installing packages, you have to edit the configuration file on the server, sub-
mission nodes and computing nodes to fit your needs.

2.7 Starting
First, you must start OAR daemon on the server (its name is “Almighty”).

∙ if you have installed OAR from sources, become root user and launch
command “Almighty” (it stands in $PREFIX/sbin).

∙ if you have installed OAR from Debian packages, use the script
“/etc/init.d/oar-server” to start the daemon.

Then you have to insert new resources in the database via the command oarnode-
setting.

If you want to automatically initialize your cluster then you just need to launch
oar_resources_init. It will detect the resources from the nodes that you put in a file and
store right OAR commands to initialize the database with the appropriate values for the
memory and the cpuset properties. Just try...

A tool is now available to help you managing your oar resources and admission
rules : oaradmin. Take a look at the oaradmin documentation in the administrator
commands section for more details.

2.8 Energy saving
Starting with version 2.4.3, OAR provides a module responsible of advanced manage-
ment of wake-up/shut-down of nodes when they are not used. To activate this feature,
you have to:

∙ provide 2 commands or scripts that are to be executed on the oar
server to shutdown (or set into standby) some nodes and to wake-
up some nodes (configure the path of those commands into the EN-
ERGY_SAVING_NODE_MANAGER_WAKE_UP_CMD and EN-
ERGY_SAVING_NODE_MANAGER_SHUT_DOWN_CMD vari-
ables into oar.conf)

∙ configure the available_upto property of all your nodes:

– available_upto=0 : to disable the wake-up and halt
– available_upto=1 : to disable the wake-up (but not the halt)
– available_upto=2147483647 : to disable the halt (but not the

wake-up)
– available_upto=2147483646 : to enable wake-up/halt forever

13

https://gforge.inria.fr/frs/?group_id=125
https://gforge.inria.fr/frs/?group_id=125

– available_upto=<timestamp> : to enable the halt, and the wake-
up until the date given by <timestamp>

∙ activate the energy saving module by setting ENERGY_SAVING_INTERNAL=“yes”
and configuring the ENERGY_* variables into oar.conf

∙ configure the metascheduler time values into SCHEDULER_NODE_MANAGER_IDLE_TIME,
SCHEDULER_NODE_MANAGER_SLEEP_TIME and SCHEDULER_NODE_MANAGER_WAKEUP_TIME
variables of the oar.conf file.

∙ restart the oar server (you should see an “Almighty” process more).

You need to restart OAR each time you change an ENERGY_* variable. More
informations are available inside the oar.conf file itself. For more details about the
mechanism, take a look at the “Hulot” module documentation.

2.9 Further informations
For further information, please check http://oar.imag.fr/.

3 Security aspects in OAR
In OAR2, security and user switching is managed by the “oardodo” script. It is a suid
script executable only by root and the oar group members that is used to launch a com-
mand, a terminal or a script with the privileges of a particular user. When “oardodo” is
called, it checks the value of an environment variable: OARDO_BECOME_USER.

∙ If this variable is empty, “oardodo” will execute the command with
the privileges of the superuser (root).

∙ Else, this variable contains the name of the user that will be used to
execute the command.

Here are the scripts/modules where “oardodo” is called and which user is used
during this call:

∙ oar_Judas: this module is used for logging and notification.

– user notification: email or command execution.OARDO_BECOME_USER
= user

∙ oarsub: this script is used for submitting jobs or reservations.

– read user script
– connection to the job and the remote shell
– keys management
– job key export

for all these functions, the user used in the OARDO_BECOME_USER
variable is the user that submits the job.

∙ pingchecker: this module is used to check resources health. Here,
the user is root.

∙ oarexec: executed on the first reserved node, oarexec executes the
job prologue and initiate the job.

14

http://oar.imag.fr/

– the “clean” method kills every oarsub connection process in su-
peruser mode

– “kill_children” method kills every child of the process in supe-
ruser mode

– execution of a passive job in user mode
– getting of the user shell in user mode
– checkpointing in superuser mode

∙ job_resource_manager: The job_resource_manager script is a perl
script that oar server deploys on nodes to manage cpusets, users,
job keys...

– cpuset creation and clean is executed in superuser mode

∙ oarsh_shell: shell program used with the oarsh script. It adds its
own process in the cpuset and launches the shell or the script of
the user.

– cpuset filling, “nice” and display management are executed as
root.

– TTY login is executed as user.

∙ oarsh: oar’s ssh wrapper to connect from node to node. It contains
all the context variables usefull for this connection.

– display management and connection with a user job key file are executed
as user.

4 Administrator commands

4.1 oarproperty
This command manages OAR resource properties stored in the database.

Options are:

-l : list properties
-a NAME : add a property

-c : sql new field of type VARCHAR(255) (default is integer)
-d NAME : delete a property
-r "OLD_NAME,NEW_NAME" : rename property OLD_NAME into NEW_NAME

Examples:

oarproperty -a cpu_freq
oarproperty -a type
oarproperty -r "cpu_freq,freq"

4.2 oarnodesetting
This command permits to change the state or a property of a node or of several re-
sources resources.

By default the node name used by oarnodesetting is the result of the command
hostname.

Options are:

15

-a : add a new resource
-s : state to assign to the node:

* "Alive" : a job can be run on the node.

* "Absent" : administrator wants to remove the node from the pool
for a moment.

* "Dead" : the node will not be used and will be deleted.
-h : specify the node name (override hostname).
-r : specify the resource number
--sql : get resource identifiers which respond to the

SQL where clause on the table jobs
(ex: "type = ’default’")

-p : change the value of a property specified resources.
-n : specify this option if you do not want to wait the end of jobs running

on this node when you change its state into "Absent" or "Dead".

4.3 oaradmin
This command permits to create resources and manage admission rules easily. An
optional feature permits versioning changes in admission rules and conf files.

Requirements:
For oaradmin, the following packages must be installed:

∙ Perl-Yaml

∙ Ruby 1.8 or greater

∙ Ruby-Yaml

∙ Ruby-DBI

∙ Subversion for the optional versioning feature

Options for resources subcommand are:

-a, --add Add new resources
--cpusetproperty=prop Property name for cpuset numbers

-s, --select Select resources for update
-p, --property Set value for a property
-d, --delete Delete resources
-c, --commit Commit in oar database

Examples:

oaradmin resources -a /node=mycluster{12}.domain/cpu={2}/core={2}
oaradmin resources -a /node=mycluster-[1-250].domain/cpu={2}
oaradmin resources -a /node=mycluster-[1-250].domain/cpu={2} -p memnode=1024 -p cpufreq=3.2 -p cputype=xeon

Options for rules subcommand are:

-l, --list List admission rules
-a, --add Add an admission rule

16

-f, --file File which contains script for admission rule
-d, --delete Delete admission rules
-x, --export Export admission rules
-e, --edit Edit an admission rule
-1, --enable Enable the admission rule (removing comments)
-0, --disable Disable the admission rule (commenting the code)
-H, --history Show all changes made on the admission rule
-R, --revert Revert to the admission rule as it existed in a revision number

Examples:

oaradmin rules -l
oaradmin rules -lll 3
oaradmin rules -e 3

Options for conf subcommand are:

-e, --edit Edit the conf file
-H, --history Show all changes made on the conf file
-R, --revert Revert to the conf file as it existed in a revision number

Examples:

oaradmin conf -e /etc/oar/oar.conf
oaradmin conf -R /etc/oar/oar.conf 3

4.4 oarremoveresource
This command permits to remove a resource from the database.

The node must be in the state “Dead” (use oarnodesetting to do this) and then you
can use this command to delete it.

4.5 oaraccounting
This command permits to update the accounting table for jobs ended since the last
launch.

Option “--reinitialize” removes everything in the accounting table and switches the
“accounted” field of the table jobs into “NO”. So when you will launch the oaraccount-
ing command again, it will take the whole jobs.

Option “--delete_before” removes records from the accounting table that are older
than the amount of time specified. So if the table becomes too big you can shrink old
data; for example:

oaraccounting --delete_before 2678400

(Remove everything older than 31 days)

4.6 oarnotify
This command sends commands to the Almighty module and manages scheduling
queues.

Option are:

17

Almighty_tag send this tag to the Almighty (default is TERM)
-e active an existing queue
-d inactive an existing queue
-E active all queues
-D inactive all queues
--add_queue add a new queue; syntax is name,priority,scheduler

(ex: "name,3,"oar_sched_gantt_with_timesharing"
--remove_queue remove an existing queue
-l list all queues and there status
-h show this help screen
-v print OAR version number

4.7 oarmonitor
This command collects monitoring data from compute nodes and stores them into the
database.

The TAKTUK_CMD is mandatory in the oar.conf and data comes from the sensor
file OARMONITOR_SENSOR_FILE (parse /proc filesystem for example) and print it
in the right way.

For example, the user “oar” or “root” can run the following command on the server:

oarmonitor -j 4242 -f 10

(Retrieve data from compute nodes of the job 4242 every 10 seconds and store them
into database tables monitoring_*)

For now, there is just a very minimalist command for the user to view these data. It
creates PNG images and a movie...

oarmonitor_graph_gen.pl -j 4242

Then the user can look into the directory OAR.1653.monitoring in the current di-
rectory.

18

5 Database scheme

Figure 1: Database scheme (red lines seem PRIMARY KEY, blue lines seem INDEX)

Note : all dates and duration are stored in an integer manner (number of seconds since
the EPOCH).

5.1 accounting

Fields Types Descriptions
window_start INT UNSIGNED start date of the accounting interval
window_stop INT UNSIGNED stop date of the accounting interval
accounting_user VARCHAR(20) user name
accounting_project VARCHAR(255) name of the related project
queue_name VARCHAR(100) queue name

... continued on next page

19

file:../schemas/db_scheme.svg

Fields Types Descriptions
consumption_type ENUM(“ASKED”,

“USED”)
“ASKED” corresponds to the walltimes
specified by the user. “USED” corre-
sponds to the effective time used by the
user.

consumption INT UNSIGNED number of seconds used

Primary key: window_start, window_stop, accounting_user, queue_name,
accounting_project, consumption_type

Index fields: window_start, window_stop, accounting_user, queue_name,
accounting_project, consumption_type

This table is a summary of the consumption for each user on each queue. This
increases the speed of queries about user consumptions and statistic generation.

Data are inserted through the command oaraccounting (when a job is treated the
field accounted in table jobs is passed into “YES”). So it is possible to regenerate this
table completely in this way :

∙ Delete all data of the table:

DELETE FROM accounting;

∙ Set the field accounted in the table jobs to “NO” for each row:

UPDATE jobs SET accounted = "NO";

∙ Run the oaraccounting command.

You can change the amount of time for each window : edit the oar configuration
file and change the value of the tag ACCOUNTING_WINDOW.

5.2 admission_rules

Fields Types Descriptions
id INT UNSIGNED id number
rule TEXT rule written in Perl applied when a job is

going to be registered

Primary key: id

Index fields: None
You can use these rules to change some values of some properties when a job is

submitted. So each admission rule is executed in the order of the id field and it can set
several variables. If one of them exits then the others will not be evaluated and oarsub
returns an error.

Some examples are better than a long description :

∙ Specify the default value for queue parameter

INSERT INTO admission_rules (rule) VALUES(’
if (not defined($queue_name)) {

20

$queue_name="default";
}

’);

∙ Avoid users except oar to go in the admin queue

INSERT INTO admission_rules (rule) VALUES (’
if (($queue_name eq "admin") && ($user ne "oar")) {

die("[ADMISSION RULE] Only oar user can submit jobs in the admin queue\\n");
}

’);

∙ Restrict the maximum of the walltime for interactive jobs

INSERT INTO admission_rules (rule) VALUES (’
my $max_walltime = iolib::sql_to_duration("12:00:00");
if ($jobType eq "INTERACTIVE"){

foreach my $mold (@{$ref_resource_list}){
if (

(defined($mold->[1])) and
($max_walltime < $mold->[1])

){
print("[ADMISSION RULE] Walltime to big for an INTERACTIVE job so it is set to $max_walltime.\\n");
$mold->[1] = $max_walltime;

}
}

}
’);

∙ Specify the default walltime

INSERT INTO admission_rules (rule) VALUES (’
my $default_wall = iolib::sql_to_duration("2:00:00");
foreach my $mold (@{$ref_resource_list}){

if (!defined($mold->[1])){
print("[ADMISSION RULE] Set default walltime to $default_wall.\\n");
$mold->[1] = $default_wall;

}
}

’);

∙ How to perform actions if the user name is in a file

INSERT INTO admission_rules (rule) VALUES (’
open(FILE, "/tmp/users.txt");
while (($queue_name ne "admin") and ($_ = <FILE>)){

if ($_ =~ m/^\\s*$user\\s*$/m){
print("[ADMISSION RULE] Change assigned queue into admin\\n");
$queue_name = "admin";

}
}

21

close(FILE);
’);

5.3 event_logs

Fields Types Descriptions
event_id INT UNSIGNED event identifier
type VARCHAR(50) event type
job_id INT UNSIGNED job related of the event
date INT UNSIGNED event date
description VARCHAR(255) textual description of the event
to_check ENUM(’YES’,

’NO’)
specify if the module NodeChangeState
must check this event to Suspect or not
some nodes

Primary key: event_id

Index fields: type, to_check
The different event types are:

∙ “PING_CHECKER_NODE_SUSPECTED” : the system detected via
the module “finaud” that a node is not responding.

∙ “PROLOGUE_ERROR” : an error occurred during the execution of
the job prologue (exit code != 0).

∙ “EPILOGUE_ERROR” : an error occurred during the execution of
the job epilogue (exit code != 0).

∙ “CANNOT_CREATE_TMP_DIRECTORY” : OAR cannot create the
directory where all information files will be stored.

∙ “CAN_NOT_WRITE_NODE_FILE” : the system was not able to
write file which had to contain the node list on the first node (/tmp/OAR_job_id).

∙ “CAN_NOT_WRITE_PID_FILE” : the system was not able to write
the file which had to contain the pid of oarexec process on the first
node (/tmp/pid_of_oarexec_for_job_id).

∙ “USER_SHELL” : the system was not able to get informations about
the user shell on the first node.

∙ “EXIT_VALUE_OAREXEC” : the oarexec process terminated with
an unknown exit code.

∙ “SEND_KILL_JOB” : signal that OAR has transmitted a kill signal
to the oarexec of the specified job.

∙ “LEON_KILL_BIPBIP_TIMEOUT” : Leon module has detected that
something wrong occurred during the kill of a job and so kill the lo-
cal bipbip process.

∙ “EXTERMINATE_JOB” : Leon module has detected that something
wrong occurred during the kill of a job and so clean the database and
terminate the job artificially.

22

∙ “WORKING_DIRECTORY” : the directory from which the job was
submitted does not exist on the node assigned by the system.

∙ “OUTPUT_FILES” : OAR cannot write the output files (stdout and
stderr) in the working directory.

∙ “CANNOT_NOTIFY_OARSUB” : OAR cannot notify the oarsub
process for an interactive job (maybe the user has killed this process).

∙ “WALLTIME” : the job has reached its walltime.

∙ “SCHEDULER_REDUCE_NB_NODES_FOR_RESERVATION” : this
means that there is not enough nodes for the reservation and so the
scheduler do the best and gives less nodes than the user wanted (this
occurres when nodes become Suspected or Absent).

∙ “BESTEFFORT_KILL” : the job is of the type besteffort and was
killed because a normal job wanted the nodes.

∙ “FRAG_JOB_REQUEST” : someone wants to delete a job.

∙ “CHECKPOINT” : the checkpoint signal was sent to the job.

∙ “CHECKPOINT_ERROR” : OAR cannot send the signal to the job.

∙ “CHECKPOINT_SUCCESS” : system has sent the signal correctly.

∙ “SERVER_EPILOGUE_TIMEOUT” : epilogue server script has time
outed.

∙ “SERVER_EPILOGUE_EXIT_CODE_ERROR” : epilogue server script
did not return 0.

∙ “SERVER_EPILOGUE_ERROR” : cannot find epilogue server script
file.

∙ “SERVER_PROLOGUE_TIMEOUT” : prologue server script has
time outed.

∙ “SERVER_PROLOGUE_EXIT_CODE_ERROR” : prologue server
script did not return 0.

∙ “SERVER_PROLOGUE_ERROR” : cannot find prologue server script
file.

∙ “CPUSET_CLEAN_ERROR” : OAR cannot clean correctly cpuset
files for a job on the remote node.

∙ “MAIL_NOTIFICATION_ERROR” : a mail cannot be sent.

∙ “USER_MAIL_NOTIFICATION” : user mail notification cannot be
performed.

∙ “USER_EXEC_NOTIFICATION_ERROR” : user script execution
notification cannot be performed.

∙ “BIPBIP_BAD_JOBID” : error when retrieving informations about
a running job.

∙ “BIPBIP_CHALLENGE” : OAR is configured to detach jobs when
they are launched on compute nodes and the job return a bad chal-
lenge number.

∙ “RESUBMIT_JOB_AUTOMATICALLY” : the job was automati-
cally resubmitted.

23

∙ “WALLTIME” : the job reached its walltime.

∙ “REDUCE_RESERVATION_WALLTIME” : the reservation job was
shrunk.

∙ “SSH_TRANSFER_TIMEOUT” : node OAR part script was too
long to transfer.

∙ “BAD_HASHTABLE_DUMP” : OAR transfered a bad hashtable.

∙ “LAUNCHING_OAREXEC_TIMEOUT” : oarexec was too long to
initialize itself.

∙ “RESERVATION_NO_NODE” : All nodes were detected as bad for
the reservation job.

5.4 event_log_hostnames

Fields Types Descriptions
event_id INT UNSIGNED event identifier
hostname VARCHAR(255) name of the node where the event has oc-

cured

Primary key: event_id

Index fields: hostname
This table stores hostnames related to events like “PING_CHECKER_NODE_SUSPECTED”.

5.5 files

Fields Types Descriptions
idFile INT UNSIGNED
md5sum VARCHAR(255)
location VARCHAR(255)
method VARCHAR(255)
compression VARCHAR(255)
size INT UNSIGNED

Primary key: idFile

Index fields: md5sum

5.6 frag_jobs

Fields Types Descriptions
frag_id_job INT UNSIGNED job id

... continued on next page

24

Fields Types Descriptions
frag_date INT UNSIGNED kill job decision date
frag_state ENUM(’LEON’,

’TIMER_ARMED’ ,
’LEON_EXTERMINATE’,
’FRAGGED’) DEFAULT
’LEON’

state to tell Leon what to do

Primary key: frag_id_job

Index fields: frag_state
What do these states mean:

∙ “LEON” : the Leon module must try to kill the job and change the
state into “TIMER_ARMED”.

∙ “TIMER_ARMED” : the Sarko module must wait a response from
the job during a timeout (default is 60s)

∙ “LEON_EXTERMINATE” : the Sarko module has decided that the
job time outed and asked Leon to clean up the database.

∙ “FRAGGED” : job is fragged.

5.7 gantt_jobs_resources

Fields Types Descriptions
moldable_job_id INT UNSIGNED moldable job id
resource_id INT UNSIGNED resource assigned to the job

Primary key: moldable_job_id, resource_id

Index fields: None
This table specifies which resources are attributed to which jobs.

5.8 gantt_jobs_resources_visu

Fields Types Descriptions
moldable_job_id INT UNSIGNED moldable job id
resource_id INT UNSIGNED resource assigned to the job

Primary key: moldable_job_id, resource_id

Index fields: None
This table is the same as gantt_jobs_resources and is used by visualisation tools. It

is updated atomically (a lock is used).

25

5.9 gantt_jobs_predictions

Fields Types Descriptions
moldable_job_id INT UNSIGNED job id
start_time INT UNSIGNED date when the job is scheduled to start

Primary key: moldable_job_id

Index fields: None
With this table and gantt_jobs_resources you can know exactly what are the deci-

sions taken by the schedulers for each waiting jobs.

note: The special job id “0” is used to store the scheduling reference date.

5.10 gantt_jobs_predictions_visu

Fields Types Descriptions
moldable_job_id INT UNSIGNED job id
start_time INT UNSIGNED date when the job is scheduled to start

Primary key: job_id

Index fields: None
This table is the same as gantt_jobs_predictions and is used by visualisation tools.

It is made up to date in an atomic action (with a lock).

5.11 jobs

Fields Types Descriptions
job_id INT UNSIGNED job identifier
job_name VARCHAR(100) name given by the user
cpuset_name VARCHAR(255) name of the cpuset directory used for

this job on each nodes
job_type ENUM(’INTERACTIVE’,

’PASSIVE’) DE-
FAULT ’PASSIVE’

specify if the user wants to launch a
program or get an interactive shell

info_type VARCHAR(255) some informations about oarsub com-
mand

... continued on next page

26

Fields Types Descriptions
state ENUM(’Waiting’,’Hold’,

’toLaunch’, ’toError’,
’toAckReservation’,
’Launching’, ’Run-
ning’ ’Suspended’,
’Resuming’, , ’Fin-
ishing’, ’Terminated’,
’Error’)

job state

reservation ENUM(’None’,
’toSchedule’, ’Sched-
uled’) DEFAULT
’None’

specify if the job is a reservation and
the state of this one

message VARCHAR(255) readable information message for the
user

job_user VARCHAR(255) user name
command TEXT program to run
queue_name VARCHAR(100) queue name
properties TEXT properties that assigned nodes must

match
launching_directory TEXT path of the directory where to launch

the user process
submission_time INT UNSIGNED date when the job was submitted
start_time INT UNSIGNED date when the job was launched
stop_time INT UNSIGNED date when the job was stopped
file_id INT UNSIGNED
accounted ENUM(“YES”,

“NO”) DEFAULT
“NO”

specify if the job was considered by
the accounting mechanism or not

notify VARCHAR(255) gives the way to notify the user about
the job (mail or script)

assigned_moldable_job INT UNSIGNED moldable job chosen by the scheduler
checkpoint INT UNSIGNED number of seconds before the walltime

to send the checkpoint signal to the job
checkpoint_signal INT UNSIGNED signal to use when checkpointing the

job
stdout_file TEXT file name where to redirect program

STDOUT
stderr_file TEXT file name where to redirect program

STDERR
resubmit_job_id INT UNSIGNED if a job is resubmitted then the new one

store the previous
project VARCHAR(255) arbitrary name given by the user or an

admission rule
... continued on next page

27

Fields Types Descriptions
suspended ENUM(“YES”,“NO”) specify if the job was suspended

(oarhold)
job_env TEXT environment variables to set for the

job
exit_code INT DEFAULT 0 exit code for passive jobs
job_group VARCHAR(255) not used

Primary key: job_id

Index fields: state, reservation, queue_name, accounted, suspended
Explications about the “state” field:

∙ “Waiting” : the job is waiting OAR scheduler decision.

∙ “Hold” : user or administrator wants to hold the job (oarhold com-
mand). So it will not be scheduled by the system.

∙ “toLaunch” : the OAR scheduler has attributed some nodes to the
job. So it will be launched.

∙ “toError” : something wrong occurred and the job is going into the
error state.

∙ “toAckReservation” : the OAR scheduler must say “YES” or “NO”
to the waiting oarsub command because it requested a reservation.

∙ “Launching” : OAR has launched the job and will execute the user
command on the first node.

∙ “Running” : the user command is executing on the first node.

∙ “Suspended” : the job was in Running state and there was a request
(oarhold with “-r” option) to suspend this job. In this state other
jobs can be scheduled on the same resources (these resources has the
“suspended_jobs” field to “YES”).

∙ “Finishing” : the user command has terminated and OAR is doing
work internally

∙ “Terminated” : the job has terminated normally.

∙ “Error” : a problem has occurred.

Explications about the “reservation” field:

∙ “None” : the job is not a reservation.

∙ “toSchedule” : the job is a reservation and must be approved by the
scheduler.

∙ “Scheduled” : the job is a reservation and is scheduled by OAR.

5.12 job_dependencies

28

Fields Types Descriptions
job_id INT UNSIGNED job identifier
job_id_required INT UNSIGNED job needed to be completed before

launching job_id

Primary key: job_id, job_id_required

Index fields: job_id, job_id_required
This table is feeded by oarsub command with the “-a” option.

5.13 moldable_job_descriptions

Fields Types Descriptions
moldable_id INT UNSIGNED moldable job identifier
moldable_job_id INT UNSIGNED corresponding job identifier
moldable_walltime INT UNSIGNED instance duration

Primary key: moldable_id

Index fields: moldable_job_id
A job can be described with several instances. Thus OAR scheduler can choose

one of them. For example it can calculate which instance will finish first. So this table
stores all instances for all jobs.

5.14 job_resource_groups

Fields Types Descriptions
res_group_id INT UNSIGNED group identifier
res_group_moldable_id INT UNSIGNED corresponding moldable job identifier
res_group_property TEXT SQL constraint properties

Primary key: res_group_id

Index fields: res_group_moldable_id
As you can specify job global properties with oarsub and the “-p” option, you can

do the same thing for each resource groups that you define with the “-l” option.

5.15 job_resource_descriptions

Fields Types Descriptions
res_job_group_id INT UNSIGNED corresponding group identifier
res_job_resource_type VARCHAR(255) resource type (name of a field in re-

sources)
... continued on next page

29

Fields Types Descriptions
res_job_value INT wanted resource number
res_job_order INT UNSIGNED order of the request

Primary key: res_job_group_id, res_job_resource_type, res_job_order

Index fields: res_job_group_id
This table store the hierarchical resource description given with oarsub and the “-l”

option.

5.16 job_state_logs

Fields Types Descriptions
job_state_log_id INT UNSIGNED identifier
job_id INT UNSIGNED corresponding job identifier
job_state ENUM(’Waiting’,

’Hold’, ’toLaunch’,
’toError’, ’toAck-
Reservation’,
’Launching’, ’Fin-
ishing’, ’Running’,
’Suspended’, ’Re-
suming’, ’Termi-
nated’, ’Error’)

job state during the interval

date_start INT UNSIGNED start date of the interval
date_stop INT UNSIGNED end date of the interval

Primary key: job_state_log_id

Index fields: job_id, job_state
This table keeps informations about state changes of jobs.

5.17 job_types

Fields Types Descriptions
job_type_id INT UNSIGNED identifier
job_id INT UNSIGNED corresponding job identifier
type VARCHAR(255) job type like “deploy”, “timesharing”, ...
type_index ENUM(’CURRENT’,

’LOG’)
index field

Primary key: job_type_id

Index fields: job_id, type
This table stores job types given with the oarsub command and “-t” options.

30

5.18 resources

Fields Types Descriptions
resource_id INT UNSIGNED resource identifier
type VARCHAR(100)

DEFAULT “default”
resource type (used for licence re-
sources for example)

network_address VARCHAR(100) node name (used to connect via SSH)
state ENUM(’Alive’,

’Dead’ , ’Sus-
pected’, ’Absent’)

resource state

next_state ENUM(’UnChanged’,
’Alive’, ’Dead’,
’Absent’, ’Sus-
pected’) DEFAULT
’UnChanged’

state for the resource to switch

finaud_decision ENUM(’YES’,
’NO’) DEFAULT
’NO’

tell if the actual state results in a “fin-
aud” module decision

next_finaud_decision ENUM(’YES’,
’NO’) DEFAULT
’NO’

tell if the next node state results in a
“finaud” module decision

state_num INT corresponding state number (useful
with the SQL “ORDER” query)

suspended_jobs ENUM(’YES’,’NO’) specify if there is at least one suspended
job on the resource

scheduler_priority INT UNSIGNED arbitrary number given by the system to
select resources with more intelligence

switch VARCHAR(50) name of the switch
cpu INT UNSIGNED global cluster cpu number
cpuset INT UNSIGNED field used with the

JOB_RESOURCE_MANAGER_PROPERTY_DB_FIELD
besteffort ENUM(’YES’,’NO’) accept or not besteffort jobs
deploy ENUM(’YES’,’NO’) specify if the resource is deployable
expiry_date INT UNSIGNED field used for the desktop computing

feature
desktop_computing ENUM(’YES’,’NO’) tell if it is a desktop computing resource

(with an agent)
last_job_date INT UNSIGNED store the date when the resource was

used for the last time
available_upto INT UNSIGNED used with compute mode features to

know if an Absent resource can be
switch on

Primary key: resource_id

31

Index fields: state, next_state, type, suspended_jobs
State explications:

∙ “Alive” : the resource is ready to accept a job.

∙ “Absent” : the oar administrator has decided to pull out the resource.
This computer can come back.

∙ “Suspected” : OAR system has detected a problem on this resource
and so has suspected it (you can look in the event_logs table to know
what has happened). This computer can come back (automatically if
this is a “finaud” module decision).

∙ “Dead” : The oar administrator considers that the resource will not
come back and will be removed from the pool.

This table permits to specify different properties for each resources. These can be
used with the oarsub command (“-p” and “-l” options).

You can add your own properties with oarproperty command.
These properties can be updated with the oarnodesetting command (“-p” option).
Several properties are added by default:

∙ switch : you have to register the name of the switch where the node
is plugged.

∙ cpu : this is a unique name given to each cpus. This enables OAR
scheduler to distinguish all cpus.

∙ cpuset : this is the name of the cpu on the node. The Linux kernel sets
this to an integer beginning at 0. This field is linked to the configura-
tion tag JOB_RESOURCE_MANAGER_PROPERTY_DB_FIELD.

5.19 resource_logs

Fields Types Descriptions
resource_log_id INT UNSIGNED unique id
resource_id INT UNSIGNED resource identifier
attribute VARCHAR(255) name of corresponding field in resources
value VARCHAR(255) value of the field
date_start INT UNSIGNED interval start date
date_stop INT UNSIGNED interval stop date
finaud_decision ENUM(’YES’,’NO’) store if this is a system change or a hu-

man one

Primary key: None

Index fields: resource_id, attribute
This table permits to keep a trace of every property changes (consequence of the

oarnodesetting command with the “-p” option).

32

5.20 assigned_resources

Fields Types Descriptions
moldable_job_id INT UNSIGNED job id
resource_id INT UNSIGNED resource assigned to the job

Primary key: moldable_job_id, resource_id

Index fields: moldable_job_id
This table keeps informations for jobs on which resources they were scheduled.

5.21 queues

Fields Types Descriptions
queue_name VARCHAR(100) queue name
priority INT UNSIGNED the scheduling priority
scheduler_policy VARCHAR(100) path of the associated scheduler
state ENUM(’Active’,

’notActive’) DE-
FAULT ’Active’

permits to stop the scheduling for a
queue

Primary key: queue_name

Index fields: None
This table contains the schedulers executed by the oar_meta_scheduler module.

Executables are launched one after one in the specified priority.

5.22 challenges

Fields Types Descriptions
job_id INT UNSIGNED job identifier
challenge VARCHAR(255) challenge string
ssh_private_key TEXT DEFAULT

NULL
ssh private key given by the user (in grid
usage it enables to connect onto all nodes
of the job of all clusers with oarsh)

ssh_public_key TEXT DEFAULT
NULL

ssh public key

Primary key: job_id

Index fields: None
This table is used to share a secret between OAR server and oarexec process on

computing nodes (avoid a job id being stolen/forged by malicious user).

33

For security reasons, this table must not be readable for a database account given
to users who want to access OAR internal informations(like statistics).

6 Configuration file
Be careful, the syntax of this file must be bash compliant(so after editing you must
be able to launch in bash ’source /etc/oar.conf’ and have variables assigned). Each
configuration tag found in /etc/oar.conf is now described:

∙ Database type : you can use a MySQL or a PostgreSQL database
(tags are “mysql” or “Pg”):

DB_TYPE=mysql

∙ Database hostname:

DB_HOSTNAME=localhost

- Database port::

DB_PORT=3306

∙ Database base name:

DB_BASE_NAME=oar

∙ DataBase user name:

DB_BASE_LOGIN=oar

∙ DataBase user password:

DB_BASE_PASSWD=oar

∙ DataBase read only user name:

DB_BASE_LOGIN_RO=oar_ro

∙ DataBase read only user password:

DB_BASE_PASSWD_RO=oar_ro

∙ OAR server hostname:

SERVER_HOSTNAME=localhost

∙ OAR server port:

SERVER_PORT=6666

∙ When the user does not specify a -l option then oar use this:

OARSUB_DEFAULT_RESOURCES="/resource_id=1"

∙ Force use of job key even if --use-job-key or -k is not set in oarsub:

OARSUB_FORCE_JOB_KEY="no"

∙ Specify where we are connected in the deploy queue(the node to
connect to when the job is in the deploy queue):

DEPLOY_HOSTNAME="127.0.0.1"

∙ Specify where we are connected with a job of the cosystem type:

34

COSYSTEM_HOSTNAME="127.0.0.1"

∙ Set DETACH_JOB_FROM_SERVER to 1 if you do not want to keep
a ssh connection between the node and the server. Otherwise set this
tag to 0:

DETACH_JOB_FROM_SERVER=1

∙ Set the directory where OAR will store its temporary files on each
nodes of the cluster. This value MUST be the same in all oar.conf on
all nodes:

OAR_RUNTIME_DIRECTORY="/tmp/oar_runtime"

∙ Specify the database field to use to fill the file on the first node of
the job in $OAR_NODE_FILE (default is ’network_address’). Only
resources with type=default are displayed in this file:

NODE_FILE_DB_FIELD="network_address"

∙ Specify the database field that will be considered to fill the node
file used by the user on the first node of the job. for each differ-
ent value of this field then OAR will put 1 line in the node file(by
default “cpu”):

NODE_FILE_DB_FIELD_DISTINCT_VALUES="core"

∙ By default OAR uses the ping command to detect if nodes are down
or not. To enhance this diagnostic you can specify one of these other
methods (give the complete command path):

– OAR taktuk:
PINGCHECKER_TAKTUK_ARG_COMMAND="-t 3 broadcast exec [true]"

If you use sentinelle.pl then you must use this tag:
PINGCHECKER_SENTINELLE_SCRIPT_COMMAND="/var/lib/oar/sentinelle.pl -t 5 -w 20"

– OAR fping:
PINGCHECKER_FPING_COMMAND="/usr/bin/fping -q"

– OAR nmap : it will test to connect on the ssh port (22):
PINGCHECKER_NMAP_COMMAND="/usr/bin/nmap -p 22 -n -T5"

– OAR generic : a specific script may be used instead
of ping to check aliveness of nodes. The script must
return bad nodes on STDERR (1 line for a bad node
and it must have exactly the same name that OAR has
given in argument of the command):
PINGCHECKER_GENERIC_COMMAND="/path/to/command arg1 arg2"

∙ OAR log level: 3(debug+warnings+errors), 2(warnings+errors), 1(er-
rors):

LOG_LEVEL=2

∙ OAR log file:

LOG_FILE="/var/log/oar.log"

∙ If you want to debug oarexec on nodes then affect 1 (only effective
if DETACH_JOB_FROM_SERVER = 1):

OAREXEC_DEBUG_MODE=0

35

∙ Set the granularity of the OAR accounting feature (in seconds). De-
fault is 1 day (86400s):

ACCOUNTING_WINDOW="86400"

∙ OAR informations may be notified by email to the administror. Set
accordingly to your configuration the next lines to activate this fea-
ture:

MAIL_SMTP_SERVER="smtp.serveur.com"
MAIL_RECIPIENT="user@domain.com"
MAIL_SENDER="oar@domain.com"

∙ Set the timeout for the prologue and epilogue execution on comput-
ing nodes:

PROLOGUE_EPILOGUE_TIMEOUT=60

∙ Files to execute before and after each job on the first computing node
(by default nothing is executed):

PROLOGUE_EXEC_FILE="/path/to/prog"
EPILOGUE_EXEC_FILE="/path/to/prog"

∙ Set the timeout for the prologue and epilogue execution on the OAR
server:

SERVER_PROLOGUE_EPILOGUE_TIMEOUT=60

∙ Files to execute before and after each job on the OAR server (by
default nothing is executed):

SERVER_PROLOGUE_EXEC_FILE="/path/to/prog"
SERVER_EPILOGUE_EXEC_FILE="/path/to/prog"

∙ Set the frequency for checking Alive and Suspected resources:

FINAUD_FREQUENCY=300

∙ Set time after which resources become Dead (default is 0 and it
means never):

DEAD_SWITCH_TIME=600

∙ Maximum of seconds used by a scheduler:

SCHEDULER_TIMEOUT=10

∙ Time to wait when a reservation has not got all resources that it has
reserved (some resources could have become Suspected or Absent
since the job submission) before to launch the job in the remaining
resources:

RESERVATION_WAITING_RESOURCES_TIMEOUT=300

∙ Time to add between each jobs (time for administration tasks or time
to let computers to reboot):

SCHEDULER_JOB_SECURITY_TIME=1

∙ Minimum time in seconds that can be considered like a hole where a
job could be scheduled in:

36

SCHEDULER_GANTT_HOLE_MINIMUM_TIME=300

∙ You can add an order preference on resource assigned by the sys-
tem(SQL ORDER syntax):

SCHEDULER_RESOURCE_ORDER="switch ASC, network_address DESC, resource_id ASC"

∙ You can specify resources from a resource type that will be always
assigned for each job (for example: enable all jobs to be able to log
on the cluster frontales). For more information, see the FAQ:

SCHEDULER_RESOURCES_ALWAYS_ASSIGNED_TYPE="42 54 12 34"

∙ This says to the scheduler to treate resources of these types, where
there is a suspended job, like free ones. So some other jobs can
be scheduled on these resources. (list resource types separate with
spaces; Default value is nothing so no other job can be scheduled on
suspended job resources):

SCHEDULER_AVAILABLE_SUSPENDED_RESOURCE_TYPE="default licence vlan"

∙ Name of the perl script that manages suspend/resume. You have to
install your script in $OARDIR and give only the name of the file
without the entire path. (default is suspend_resume_manager.pl):

SUSPEND_RESUME_FILE="suspend_resume_manager.pl"

∙ Files to execute just after a job was suspended and just before a job
was resumed:

JUST_AFTER_SUSPEND_EXEC_FILE="/path/to/prog"
JUST_BEFORE_RESUME_EXEC_FILE="/path/to/prog"

∙ Timeout for the two previous scripts:

SUSPEND_RESUME_SCRIPT_TIMEOUT=60

∙ Indicate the name of the database field that contains the cpu number
of the node. If this option is set then users must use OARSH instead
of ssh to walk on each nodes that they have reserved via oarsub.

JOB_RESOURCE_MANAGER_PROPERTY_DB_FIELD=cpuset

∙ Name of the perl script that manages cpuset. You have to install your
script in $OARDIR and give only the name of the file without the
entire path. (default is cpuset_manager.pl which handles the linux
kernel cpuset)

JOB_RESOURCE_MANAGER_FILE="cpuset_manager.pl"

∙ Resource “type” DB field to use if you want to enable the job uid
feature. (create a unique user id per job on each nodes of the job)

JOB_RESOURCE_MANAGER_JOB_UID_TYPE="userid"

∙ If you have installed taktuk and want to use it to manage cpusets then
give the full command path (with your options except “-m” and “-o”
and “-c”). You don’t also have to give any taktuk command.(taktuk
version must be >= 3.6)

37

TAKTUK_CMD="/usr/bin/taktuk -s"

∙ If you want to manage nodes to be started and stoped. OAR gives
you this API:

∙ When OAR scheduler wants some nodes to wake up then it launches
this command and puts on its STDIN the list of nodes to wake up
(one hostname by line).The scheduler looks at available_upto field
in the resources table to know if the node will be started for enough
time:

SCHEDULER_NODE_MANAGER_WAKE_UP_CMD="/path/to/the/command with your args"

∙ When OAR considers that some nodes can be shut down, it launches
this command and puts the node list on its STDIN(one hostname by
line):

SCHEDULER_NODE_MANAGER_SLEEP_CMD="/path/to/the/command args"

∙ Parameters for the scheduler to decide when a node is idle(number
of seconds since the last job was terminated on the nodes):

SCHEDULER_NODE_MANAGER_IDLE_TIME=600

∙ Parameters for the scheduler to decide if a node will have enough
time to sleep(number of seconds before the next job):

SCHEDULER_NODE_MANAGER_SLEEP_TIME=600

∙ Command to use to connect to other nodes (default is “ssh” in the
PATH)

OPENSSH_CMD="/usr/bin/ssh"

∙ These are configuration tags for OAR in the desktop-computing mode:

DESKTOP_COMPUTING_ALLOW_CREATE_NODE=0
DESKTOP_COMPUTING_EXPIRY=10
STAGEOUT_DIR="/var/lib/oar/stageouts/"
STAGEIN_DIR="/var/lib/oar/stageins"
STAGEIN_CACHE_EXPIRY=144

∙ This variable must be set to enable the use of oarsh from a frontale
node. Otherwise you must not set this variable if you are not on a
frontale:

OARSH_OARSTAT_CMD="/usr/bin/oarstat"

∙ The following variable adds options to ssh. If one option is not han-
dled by your ssh version just remove it BUT be careful because these
options are there for security reasons:

OARSH_OPENSSH_DEFAULT_OPTIONS="-oProxyCommand=none -oPermitLocalCommand=no"

∙ Name of the perl script the retrive monitoring data from compute
nodes. This is used in oarmonitor command.

OARMONITOR_SENSOR_FILE=“/etc/oar/oarmonitor_sensor.pl”

38

7 Modules descriptions
OAR can be decomposed into several modules which perform different tasks.

7.1 Almighty
This module is the OAR server. It decides what actions must be performed. It is divided
into 2 processes:

∙ One listens to a TCP/IP socket. It waits informations or commands
from OAR user program or from the other modules.

∙ Another one deals with commands thanks to an automaton and launch
right modules one after one.

It’s behaviour is represented in these schemes.

∙ General schema:

39

40

When the Almighty automaton starts it will first open a socket and creates a pipe
for the process communication with it’s forked son. Then, Almighty will fork itself
in a process called “appendice” which role is to listen to incoming connections on
the socket and catch clients messages. These messages will be thereafter piped to
Almighty. Then, the automaton will change it’s state according to what message has
been received.

∙ Scheduler schema:

∙ Finaud schema:

41

∙ Leon schema:

∙ Sarko schema:

42

∙ ChangeNode schema:

43

7.2 Sarko
This module is executed periodically by the Almighty (default is every 30 seconds).

The jobs of Sarko are :

∙ Look at running job walltimes and ask to frag them if they had ex-
pired.

∙ Detect if fragged jobs are really fragged otherwise asks to extermi-
nate them.

∙ In “Desktop Computing” mode, it detects if a node date has expired
and asks to change its state into “Suspected”.

∙ Can change “Suspected” resources into “Dead” after DEAD_SWITCH_TIME
seconds.

7.3 Judas
This is the module dedicated to print and log every debugging, warning and error mes-
sages.

The notification functions are the following:

∙ send_mail(mail_recipient_address, object, body, job_id) that sends
emails to the OAR admin

∙ notify_user(base, method, host, user, job_id, job_name, tag, com-
ments) that parses the notify method. This method can be a user
script or a mail to send. If the “method” field begins with “mail:”,
notify_user will send an email to the user. If the beginning is “exec:”,
it will execute the script as the “user”.

The main logging functions are the following:

∙ redirect_everything() this function redirects STDOUT and STDERR
into the log file

∙ oar_debug(message)

∙ oar_warn(message)

∙ oar_error(message)

The three last functions are used to set the log level of the message.

7.4 Leon
This module is in charge to delete the jobs. Other OAR modules or commands can ask
to kill a job and this is Leon which performs that.

There are 2 frag types :

∙ normal : Leon tries to connect to the first node allocated for the job
and terminates the job.

∙ exterminate : after a timeout if the normal method did not succeed
then Leon notifies this case and clean up the database for these jobs.
So OAR doesn’t know what occured on the node and Suspects it.

44

7.5 Runner
This module launches OAR effective jobs. These processes are run asynchronously
with all modules.

For each job, the Runner uses OPENSSH_CMD to connect to the first node of
the reservation and propagate a Perl script which handles the execution of the user
command.

∙ for each job in “toError” state, answer to the oarsub client: “BAD
JOB”. This will exit the client with an error code.

∙ for each job in “toAckReservation” state, try to acknowledge the oar-
sub client reservation. If runner cannot contact the client, it will frag
the job.

∙ for each job to launch, launch job’s bipbip.

∙ Runner schema:

45

∙ bipbip schema:

46

7.6 NodeChangeState
This module is in charge of changing resource states and checking if there are jobs on
these.

It also checks all pending events in the table event_logs.

47

7.7 Scheduler
This module checks for each reservation jobs if it is valid and launches them at the
right time.

Scheduler launches all gantt scheduler in the order of the priority specified in the
database and update all visualization tables (gantt_jobs_predictions_visu and gantt_jobs_resources_visu).

7.7.1 oar_sched_gantt_with_timesharing

This is the default OAR scheduler. It implements all functionalities like timesharing,
moldable jobs, besteffort jobs, ...

By default, this scheduler is used by all default queues.
We have implemented the FIFO with backfilling algorithm. Some parameters

can be changed in the configuration file (see SCHEDULER_TIMEOUT, SCHED-
ULER_JOB_SECURITY_TIME, SCHEDULER_GANTT_HOLE_MINIMUM_TIME,
SCHEDULER_RESOURCE_ORDER).

7.7.2 oar_sched_gantt_with_timesharing_and_fairsharing

This scheduler is the same than oar_sched_gantt_with_timesharing but it looks at the
consumption past and try to order waiting jobs with fairsharing in mind.

Some parameters can be changed directly in the file:

###
Fairsharing parameters
##########################
Avoid problems if there are too many waiting jobs
my $Karma_max_number_of_jobs_treated = 1000;
number of seconds to consider for the fairsharing
my $Karma_window_size = 3600 * 30;
specify the target percentages for project names (0 if not specified)
my $Karma_project_targets = {

first => 75,
default => 25

};

specify the target percentages for users (0 if not specified)
my $Karma_user_targets = {

oar => 100
};
weight given to each criteria
my $Karma_coeff_project_consumption = 3;
my $Karma_coeff_user_consumption = 2;
my $Karma_coeff_user_asked_consumption = 1;
###

This scheduler takes its historical data in the accounting table. To fill this, the com-
mand oaraccounting have to be run periodically (in a cron job for example). Otherwise
the scheduler cannot be aware of new user consumptions.

48

7.8 Hulot
This module is responsible of the advanced management of the standby mode of the
nodes. It’s related to the energy saving features of OAR. It is an optional module
activated with the ENERGY_SAVING_INTERNAL=yes configuration variable.

It runs as a fourth “Almighty” daemon and opens a pipe on which it receives com-
mands from the MetaScheduler. It also communicates with a library called “Window-
Forker” that is responsible of forking shut-down/wake-up commands in a way that not
too much commands are started at a time.

∙ Hulot general commands process schema:

49

When Hulot is activated, the metascheduler sends, each time it is executed, a list of
nodes that need to be woken-up or may be halted. Hulot maintains a list of commands
that have already been sent to the nodes and asks to the windowforker to actually ex-
ecute the commands only when it is appropriate. A special feature is the “keepalive”
of nodes depending on some properties: even if the metascheduler asks to shut-down
some nodes, it’s up to Hulot to check if the keepalive constraints are still satisfied. If
not, Hulot refuses to halt the corresponding nodes.

∙ Hulot checking process schema:

50

Hulot is called each time the metascheduler is called, to do all the checking process.
This process is also executed when Hulot receives normal halt or wake-up commands
from the scheduler. Hulot checks if waking-up nodes are actually Alive or not and sus-
pects the nodes if they haven’t woken-up before the timeout. It also checks keepalive
constraints and decides to wake-up nodes if a constraint is no more satisfied (for ex-
ample because new jobs are running on nodes that are now busy, and no more idle).
Hulot also checks the results of the commands sent by the windowforker and may also
suspect a node if the command exited with non-zero status.

∙ Hulot wake-up process schema

51

∙ Hulot shutdown process schema

52

53

8 Internal mechanisms

8.1 Job execution

54

8.2 Scheduling

9 FAQ - ADMIN

9.1 Release policy
Since the version 2.2, release numbers are divided into 3 parts:

55

∙ The first represents the design and the implementation used.

∙ The second represents a set of OAR functionalities.

∙ The third is incremented after bug fixes.

9.2 What means the error “Bad configuration option: PermitLo-
calCommand” when I am using oarsh?
For security reasons, on the latest OpenSSH releases you are able to execute a local
command when you are connecting to the remote host and we must deactivate this
option because the oarsh wrapper executes the ssh command into the user oar.

So if you encounter this error message it means that your OpenSSH does not know
this option and you have to remove it from the oar.conf. There is a variable named
OARSH_OPENSSH_DEFAULT_OPTIONS in oar.conf used by oarsh. So you have
just to remove the not yet implemented option.

9.3 How to manage start/stop of the nodes?
You have to add a script in /etc/init.d which switches resources of the node into the
“Alive” or “Absent” state. So when this script is called at boot time, it will change the
state into “Alive”. And when it is called at halt time, it will change into “Absent”.

There two ways to perform this action:

1. Install OAR “oar-libs” part on all nodes. Thus you will be able
to launch the command oarnodesetting (be careful to right con-
figure “oar.conf” with database login and password AND to
allow network connections on this database). So you can exe-
cute:

oarnodesetting -s Alive -h node_hostname
or

oarnodesetting -s Absent -h node_hostname

2. You do not want to install anything else on each node. So you
have to enable oar user to connect to the server via ssh (for
security you can use another SSH key with restrictions on the
command that oar can launch with this one). Thus you will
have in you init script something like:

sudo -u oar ssh oar-server "oarnodesetting -s Alive -h node_hostname"
or

sudo -u oar ssh oar-server "oarnodesetting -s Absent -h node_hostname"

In this case, further OAR software upgrade will be more pain-
less.

9.4 How can I manage scheduling queues?
see oarnotify.

56

9.5 How can I handle licence tokens?
OAR does not manage resources with an empty “network_address”. So you can define
resources that are not linked with a real node.

So the steps to configure OAR with the possibility to reserve licences (or whatever
you want that are other notions):

1. Add a new field in the table resources to specify the licence
name.

oarproperty -a licence -c

2. Add your licence name resources with oarnodesetting.

oarnodesetting -a -h "" -p type=mathlab -p licence=l1
oarnodesetting -a -h "" -p type=mathlab -p licence=l2
oarnodesetting -a -h "" -p type=fluent -p licence=l1
...

3. Now you have to write an admission rule to force oarsub “-l”
option on resources of the type “default” (node resources) if
there is no other specifications.

INSERT INTO admission_rules (rule) VALUES (’
foreach my $mold (@{$ref_resource_list}){

foreach my $r (@{$mold->[0]}){
my $prop = $r->{property};
if (($prop !~ /[\\s\\(]type[\\s=]/) and ($prop !~ /^type[\\s=]/)){

if (!defined($prop)){
$r->{property} = "type = \\\’default\\\’";

}else{
$r->{property} = "($r->{property}) AND type = \\\’default\\\’";

}
}

}
}
print("[ADMISSION RULE] Modify resource description with type constraints\\n");
’);

After this configuration, users can perform submissions like

oarsub -I -l "/switch=2/nodes=10+{type = ’mathlab’}/licence=20"

So users ask OAR to give them some other resource types but nothing block their
program to take more licences than they asked. You can resolve this problem with the
SERVER_SCRIPT_EXEC_FILE configuration. In these files you have to bind OAR
allocated resources to the licence servers to restrict user consumptions to what they
asked. This is very dependant of the licence management.

9.6 How can I handle multiple clusters with one OAR?
These are the steps to follow:

57

1. create a resource property to identify the corresponding cluster
(like “cluster”):

oarproperty -a cluster

(you can see this new property when you use oarnodes)

2. with oarnodesetting you have to fill this field for all resources;
for example:

oarnodesetting -h node42.cluster1.com -p cluster=1
oarnodesetting -h node43.cluster1.com -p cluster=1
oarnodesetting -h node2.cluster2.com -p cluster=2
...

3. Then you have to restrict properties for new job type. So an
admission rule performs this job (this is a SQL syntax to use in
a database interpreter):

INSERT IGNORE INTO admission_rules (rule) VALUES (’
my $cluster_constraint = 0;
if (grep(/^cluster1$/, @{$type_list})){

$cluster_constraint = 1;
}elsif (grep(/^cluster2$/, @{$type_list})){

$cluster_constraint = 2;
}

if ($cluster_constraint > 0){
if ($jobproperties ne ""){

$jobproperties = "($jobproperties) AND cluster = $cluster_constraint";
}else{

$jobproperties = "cluster = $cluster_constraint";
}
print("[ADMISSION RULE] Added automatically cluster resource constraint\\n");

}
’);

4. Edit the admission rule which checks the right job types and
add “cluster1” and “cluster2” in.

So when you will use oarsub to submit a “cluster2” job type only resources with
the property “cluster=2” is used. This is the same when you will use the “cluster1”
type.

9.7 How to configure a more ecological cluster (or how to make
some power consumption economies)?
This feature can be performed with the Dynamic nodes coupling features.

First you have to make sure that you have a command to wake up a computer that
is stopped. For example you can use the WoL (Wake on Lan) feature (generally you
have to right configure the BIOS and add right options to the Linux Ethernet driver; see
“ethtool”).

If you want to enable a node to be woke up the next 12 hours:

58

((DATE=$(date +%s)+3600*12))
oarnodesetting -h host_name -p cm_availability=$DATE

Otherwise you can disable the wake up of nodes (but not the halt) by:

oarnodesetting -h host_name -p cm_availability=1

If you want to disable the halt on a node (but not the wakeup):

oarnodesetting -h host_name -p cm_availability=2147483647

2147483647 = 2^31 - 1 : we take this value as infinite and it is used to disable the
halt mechanism.

And if you want to disable the halt and the wakeup:

oarnodesetting -h host_name -p cm_availability=0

Note: In the unstable 2.4 OAR version, cm_availability has been renamed into
available_upto.

Your SCHEDULER_NODE_MANAGER_WAKE_UP_CMD must be a script that
read node names and translate them into the right wake up command.

So with the right OAR and node configurations you can optimize the power con-
sumption of your cluster (and your air conditioning infrastructure) without drawback
for the users.

Take a look at your cluster occupation and your electricity bill to know if it could
be interesting for you ;-)

9.8 How to configure temporary UID for each job?
For a better way to handle job processes we introduce the temporary user id feature.

This feature creates a user for each job on assigned nodes. Hence it is possible to
clean temporary files, IPC, every generated processes, ... Furthermore a lot of system
features could be used like bandwidth management (iptables rules on the user id).

To configure this feature, CPUSET must be activated and the tag JOB_RESOURCE_MANAGER_JOB_UID_TYPE
has to be configured in the oar.conf file. The value is the content of the “type” field into
the resources table. After that you have to add resources in the database with this type
and fill the cpuset field with a unique UID (not used by real users). The maximum
number of concurrent jobs is the number of resources of this type.

For example, if you put this in your oar.onf:

JOB_RESOURCE_MANAGER_PROPERTY_DB_FIELD="cpuset"
JOB_RESOURCE_MANAGER_JOB_UID_TYPE="user"

Then you can add temporary UID:

oarnodesetting -a -h fake -p cpuset=23000 -p type=user
oarnodesetting -a -h fake -p cpuset=23001 -p type=user
oarnodesetting -a -h fake -p cpuset=23002 -p type=user
...

You can put what you want in the place of the hostname (here “fake”).
The drawback of this feature is that users haven’t their UID only their GID.

59

9.9 How to enable jobs to connect to the frontales from the nodes
using oarsh?
First you have to install the node part of OAR on the wanted nodes.

After that you have to register the frontales into the database using oarnodesetting
with the “frontal” (for example) type and assigned the desired cpus into the cpuset
field; for example:

oarnodesetting -a -h frontal1 -p type=frontal -p cpuset=0
oarnodesetting -a -h frontal1 -p type=frontal -p cpuset=1
oarnodesetting -a -h frontal2 -p type=frontal -p cpuset=0
...

Thus you will be able to see resources identifier of these resources with oarnodes;
try to type:

oarnodes --sql "type=’frontal’"

Then put this type name (here “frontal”) into the oar.conf file on the OAR server
into the tag SCHEDULER_RESOURCES_ALWAYS_ASSIGNED_TYPE.

Notes:

∙ if one of these resources become “Suspected” then the scheduling will stop.

∙ you can disable this feature with oarnodesetting and put these resources
into the “Absent” state.

9.10 A job remains in the “Finishing” state, what can I do?
If you have waited more than a couple of minutes (10mn for example) then something
wrong occurred (frontal has crashed, out of memory, ...).

So you are able to turn manually a job into the “Error” state by typing in the OAR
install directory with the root user (example with a bash shell):

export OARCONFFILE=/etc/oar/oar.conf
perl -e ’use oar_iolib; $db = iolib::connect(); iolib::set_job_state($db,42,"Error")’

(Replace 42 by your job identifier)

9.11 How can I write my own scheduler?
Definition of the scheduler’s interface:

The scheduler can be any executable file, stored in the schedulers repository (/usr/lib/oar/schedulers/
for installations using the Debian packages). The scheduler is executed by the “metasched-
uler”, that handles sequentially the different queues by priority order and make the glue
between them (besteffort jobs to kill, etc). THe scheduler executable has the following
interface:

∙ it gets 3 arguments:
1. queue name
2. reference time in second
3. reference time in sql format (for conveniance only)

60

∙ only jobs of your queue and with the state “Waiting” or “Reservation
= None” should be manipulated

∙ any information stored in the database can however be taken into
account (read).

∙ previous decisions of the other schedulers (other queues) should be
taken into account: information from tables gantt_jobs_predictions
and gantt_jobs_resources, in order to avoid conflicts between jobs of
different queues.

∙ decisions must be stored in the tables gantt_jobs_predictions and
gantt_jobs_resources

∙ the state of some jobs can be set to “toError” so that OAR delete
them after the scheduler’s run. If any job is set to that state, the
scheduler must return an exit code equal to 1, in order to notify the
metascheduler, otherwise exit code must be 0.

As an example, you can look at the default OAR scheduler “oar_sched_gantt_with_timesharing”.
It uses a gantt and a resource tree libraries that are essential to take some decisions.

9.12 What is the syntax of this documentation?
We are using the RST format from the Docutils project. This syntax is easily readable
and can be converted into HTML, LaTex or XML.

You can find basic informations on http://docutils.sourceforge.net/docs/user/rst/quickref.
html

10 OAR CHANGELOG

10.1 next version
∙ Bugfix: Fix a regression (only for PostgreSQL) in Drawgantt intro-

duced in the version 2.4.6 (thanks to Yann Genevois).

10.2 version 2.4.7:
∙ Backport: Debug checkpoint feature with cosystem or deploy jobs.

10.3 version 2.4.6:
∙ Fix the user variable used in oarsh. When using oarsh from the

frontal, the variable OAR_USER was not defined in the environment,
and make oarsh unable to read the user private key file.

∙ Backport: Bugfix #13434: reservation were not handled correctly
with the energy saving feature

∙ Draw-Gantt: Do not display Absent node in the future that are in the
stanby “sub-state”.

∙ Bugfix: spelling error (network_addess > network_address)

61

http://docutils.sourceforge.net/
http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://docutils.sourceforge.net/docs/user/rst/quickref.html

10.4 version 2.4.5:
∙ backport: node_change_state: do not Suspect the first node of a job

which was EXTERMINATED by Leon if the cpuset feature is con-
figured (let do the job by the cpuset)

∙ backport: OAREXEC: ESRF detected that sometime oarexec think
that he notified the Almighty with it exit code but nothing was seen
on the server. So try to resend the exit code until oarexec is killed.

∙ backport: oar_Tools: add in notify_almighty a check on the print and
on the close of the socket connected to Almighty.

∙ backport: switch to /bin/bash as default (some scripts currently need
bash).

10.5 version 2.4.4:
∙ Bug 10999: memory leak into Hulot when used with postgresql. The

leak has been minimized, but it is still there (DBD::Pg bug)

∙ Almighty cleans ipcs used by oar on exit

∙ Bugfix #10641 and #10999 : Hulot is automatically and periodically
restarted

∙ oar_resource_init: bad awk delimiter. There’s a space and if the
property is the first one then there is not a ’,’.

∙ job suspend: oardo does not exist anymore (long long time ago).
Replace it with oardodo.

∙ Bugfix: oaradmin rules edition/add was broken

∙ Bug #11599: missing pingchecker line into Leon

∙ Bug #10567: enabling to bypass window mechanism of hulot (Back-
port from 2.5)

∙ Bug #10568: Wake up timeout changing with the number of nodes
(Backport from 2.5)

∙ oarsub: when an admission rule died micheline returns an integer
and not an array ref. Now oarsub ends nicely.

∙ Monika: add a link on each jobid on the node display area.

∙ sshd_config: with nodes with a lot of core, 10 // connections could
be too few

10.6 version 2.4.3:
∙ Hulot module now has customizable keepalive feature (backport from

2.5)

∙ Added a hook to launch a healing command when nodes are sus-
pected (backport from 2.5)

∙ Bugfix #9995: oaraccouting script doesn’t freeze anymore when db
is unreachable.

62

∙ Bugfix #9990: prevent from inserting jobs with invalid username
(like an empty username)

∙ Oarnodecheck improvements: node is not checked if a job is already
running

∙ New oaradmin option: --auto-offset

∙ Feature request #10565: add the possibility to check the aliveness of
the nodes of a job at the end of this one (pingchecker)

10.7 version 2.4.2:
∙ New “Hulot” module for intelligent and configurable energy saving

∙ Bug #9906: fix bad optimization in the gantt lib (so bad scheduling

10.8 version 2.4.1:
∙ Bug #9038: Security flaw in oarsub --notify option

∙ Bug #9601: Cosystem jobs are no more killed when a resource is set
to Absent

∙ Fixed some packaging bugs

∙ API bug fixes in job submission parsing

∙ Added standby info into oarnodes -s and available_upto info into
/resources uri of the API

∙ Bug Grid’5000 #2687 Fix possible crashes of the scheduler.

∙ Bug fix: with MySQL DB Finaud suspected resources which are not
of the “default” type.

∙ Signed debian packages (install oar-keyring package)

10.9 version 2.4.0:
∙ Fix bug in oarnodesetting command generated by oar_resources_init

(detect_resources)

∙ Added a --state option to oarstat to only get the status of specified
jobs (optimized query, to allow scripting)

∙ Added a REST API for OAR and OARGRID

∙ Added JSON support into oarnodes, oarstat and oarsub

∙ New Makefile adapted to build packages as non-root user

∙ add the command “oar_resources_init” to easily detect and initialize
the whole resources of a cluster.

∙ “oaradmin version” : now retrieve the most recent database schema
number

∙ Fix rights on the “schema” table in postgresql.

∙ Bug #7509: fix bug in add_micheline_subjob for array jobs + job-
types

63

∙ Ctrl-C was not working anymore in oarsub. It seems that the signal
handler does not handle the previous syntax ($SIG = ’qdel’)

∙ Fix bug in oarsh with the “-l” option
∙ Bug #7487: bad initialisation of the gnatt for the container jobs.
∙ Scheduler: move the “delete_unnecessary_subtrees” directly into “find_first_hole”.

Thus this is possible to query a job like:

oarsub -I -l nodes=1/core=1+nodes=4/core=2
(no hard separation between each group)

For the same behaviour as before, you can query: oarsub -I -l {prop=1}/nodes=1/core=1+{prop=2}/nodes=4/core=2
∙ Bug #7634: test if the resource property value is effectively defined

otherwise print a ”
∙ Optional script to take into account cpu/core topology of the nodes

at boot time (to activate inside oarnodesetting_ssh)
∙ Bug #7174: Cleaned default PATH from “./” into oardodo
∙ Bug #7674: remove the computation of the scheduler_priority field

for besteffort jobs from the asynchronous OAR part. Now the value
is set when the jobs are turned into toLaunch state and in Error/Terminated.

∙ Bug #7691: add --array and --array-param-file options parsing into
the submitted script. Fix also some parsing errors.

∙ Bug #7962: enable resource property “cm_availability” to be manip-
ulated by the oarnodesetting command

∙ Added the (standby) information to a node state in oarnodes when it’s state
is Absent and cm_availability != 0

∙ Changed the name of cm_availability to available_upto which is more
relevant

∙ add a --maintenance option to oarnodesetting that sets the state of a
resource to Absent and its available_upto to 0 if maintenance is on
and resets previous values if maintenance is off.

∙ added a --signal option to oardel that allow a user to send a signal to
one of his jobs

∙ added a name field in the schema table that will refer to the OAR
version name

∙ added a table containing scheduler name, script and description
∙ Bug #8559: Almighty: Moved OAREXEC_XXXX management code

out of the queue for immediate action, to prevent potential problems
in case of scheduler timeouts.

∙ oarnodes, oarstat and the REST API are no more making retry con-
nections to the database in case of failure, but exit with an error in-
stead. The retry behavior is left for daemons.

∙ improved packaging (try to install files in more standard places)
∙ improved init script for Almighty (into deb and rpm packages)
∙ fixed performance issue on oarstat (array_id index missing)
∙ fixed performance issue (job_id index missing in event_log table)
∙ fixed a performance issue at job submission (optimized a query and

added an index on challenges table) decisions).

64

10.10 version 2.3.5:
∙ Bug #8139: Drawgantt nil error (Add condition to test the presence

of nil value in resources table.)

∙ Bug #8416: When a the automatic halt/wakeup feature is enabled
then there was a problem to determine idle nodes.

∙ Debug a mis-initialization of the Gantt with running jobs in the metasched-
uler (concurrency access to PG database)

10.11 version 2.3.4:
∙ add the command “oar_resources_init” to easily detect and initialize

the whole resources of a cluster.

∙ “oaradmin version” : now retrieve the most recent database schema
number

∙ Fix rights on the “schema” table in postgresql.

∙ Bug #7509: fix bug in add_micheline_subjob for array jobs + job-
types

∙ Ctrl-C was not working anymore in oarsub. It seems that the signal
handler does not handle the previous syntax ($SIG = ’qdel’)

∙ Bug #7487: bad initialisation of the gnatt for the container jobs.

∙ Fix bug in oarsh with the “-l” option

∙ Bug #7634: test if the resource property value is effectively defined
otherwise print a ”

∙ Bug #7674: remove the computation of the scheduler_priority field
for besteffort jobs from the asynchronous OAR part. Now the value
is set when the jobs are turned into toLaunch state and in Error/Terminated.

∙ Bug #7691: add --array and --array-param-file options parsing into
the submitted script. Fix also some parsing errors.

∙ Bug #7962: enable resource property “cm_availability” to be manip-
ulated by the oarnodesetting command

10.12 version 2.3.3:
∙ Fix default admission rules: case unsensitive check for properties

used in oarsub

∙ Add new oaradmin subcommand : oaradmin conf. Useful to edit
conf files and keep changes in a Subversion repository.

∙ Kill correctly each taktuk command children in case of a timeout.

∙ New feature: array jobs (option --array) (on oarsub, oarstat oardel,
oarhold and oarresume) and file-based parametric array jobs (oarsub
--array-param-file) /!in this version the DB scheme has changed. If
you want to upgrade your installation from a previous 2.3 release
then you have to execute in your database one of these SQL script
(stop OAR before):

65

mysql:
DB/mysql_structure_upgrade_2.3.1-2.3.3.sql

postgres:
DB/pg_structure_upgrade_2.3.1-2.3.3.sql

10.13 version 2.3.2:
∙ Change scheduler timeout implementation to schedule the maximum

of jobs.

∙ Bug #5879: do not show initial_request in oarstat when it is not a job
of the user who launched the oarstat command (oar or root).

∙ Add a --event option to oarnodes and oarstat to display events recorded
for a job or node

∙ Display reserved resources for a validated waiting reservation, with
a hint in their state

∙ Fix oarproperty: property names are lowercase

∙ Fix OAR_JOB_PROPERTIES_FILE: do not display system proper-
ties

∙ Add a new user command: oarprint which allow to pretty print re-
source properties of a job

∙ Debug temporary job UID feature

∙ Add ’kill -9’ on subprocesses that reached a timeout (avoid Perl to
wait something)

∙ desktop computing feature is now available again. (ex: oarsub -t
desktop_computing date)

∙ Add versioning feature for admission rules with Subversion

10.14 version 2.3.1:
∙ Add new oarmonitor command. This will permit to monitor OAR

jobs on compute nodes.

∙ Remove sudo dependency and replace it by the commands “oardo”
and “oardodo”.

∙ Add possibility to create a temporary user for each jobs on compute
nodes. So you can perform very strong restrictions for each job (ex:
bandwidth restrictions with iptable, memory management, ... every-
thing that can be handled with a user id)

∙ Debian packaging: Run OAR specific sshd with root privileges (un-
der heavy load, kernel may be more responsive for root processes...)

∙ Remove ALLOWED_NETWORKS tag in oar.conf (added more com-
plexeity than resolving problems)

∙ /!change database scheme for the field exit_code in the table jobs.
Now oarstat exit_code line reflects the right exit code of the user
passive job (before, even when the user script was not launched the
exit_code was 0 which was BAD)

66

∙ /!add DB field initial_request in the table jobs that stores the oarsub
line of the user

∙ Feature Request #4868: Add a parameter to specify what the “nodes”
resource is a synomym for. Network_address must be seen as an
internal data and not used.

∙ Scheduler: add timeout for each job == 1/4 of the remaining sched-
uler timeout.

∙ Bug #4866: now the whole node is Suspected instead of just the
par where there is no job onto. So it is possible to have a job on
Suspected nodes.

∙ Add job walltime (in seconds) in parameter of prologue and epilogue
on compute nodes.

∙ oarnodes does not show system properties anymore.

∙ New feature: container job type now allows to submit inner jobs for
a scheduling within the container job

∙ Monika refactoring and now in the oar packaging.

∙ Added a table schema in the db with the field version, reprensenting
the version of the db schema.

∙ Added a field DB_PORT in the oar config file.

∙ Bug #5518: add right initialization of the job user name.

∙ Add new oaradmin command. This will permit to create resources
and manage admission rules more easily.

∙ Bug #5692: change source code into a right Perl 5.10 syntax.

10.15 version 2.2.12:
∙ Bug #5239: fix the bug if there are spaces into job name or project

∙ Fix the bug in Iolib if DEAD_SWITCH_TIME >0

∙ Fix a bug in bipbip when calling the cpuset_manager to clean jobs in
error

∙ Bug #5469: fix the bug with reservations and Dead resources

∙ Bug #5535: checks for reservations made at a same time was wrong.

∙ New feature: local checks on nodes can be plugged in the oarn-
odecheck mechanism. Results can be asynchronously checked from
the server (taktuk ping checker)

∙ Add 2 new tables to keep track of the scheduling decisions (gantt_jobs_predictions_log
and gantt_jobs_resources_log). This will help debugging scheduling
troubles (see SCHEDULER_LOG_DECISIONS in oar.conf)

∙ Now reservations are scheduled only once (at submission time). Re-
sources allocated to a reservations are definitively set once the vali-
dated is done and won’t change in next scheduler’s pass.

∙ Fix DrawGantt to not display besteffort jobs in the future which is
meaningless.

67

10.16 version 2.2.11:
∙ Fix Debian package dependency on a CGI web server.

∙ Fix little bug: remove notification (scheduled start time) for Interac-
tive reservation.

∙ Fix bug in reservation: take care of the SCHEDULER_JOB_SECURITY_TIME
for reservations to check.

∙ Fix bug: add a lock around the section which creates and feed the
OAR cpuset.

∙ Taktuk command line API has changed (we need taktuk >= 3.6).

∙ Fix extra ’ in the name of output files when using a job name.

∙ Bug #4740: open the file in oarsub with user privileges (-S option)

∙ Bug #4787: check if the remote socket is defined (problem of timing
with nmap)

∙ Feature Request #4874: check system names when renaming prop-
erties

∙ DrawGantt can export charts to be reused to build a global multi-
OAR view (e.g. DrawGridGantt).

∙ Bug #4990: DrawGantt now uses the database localtime as its time
reference.

10.17 version 2.2.10:
∙ Job dependencies: if the required jobs do not have an exit code ==

0 and in the state Terminated then the schedulers refuse to schedule
this job.

∙ Add the possibility to disable the halt command on nodes with cm_availability
value.

∙ Enhance oarsub “-S” option (more #OAR parsed).

∙ Add the possibility to use oarsh without configuring the CPUSETs
(can be useful for users that don’t want to configure there ssh keys)

10.18 version 2.2.9:
∙ Bug 4225: Dump only 1 data structure when using -X or -Y or -D.

∙ Bug fix in Finishing sequence (Suspect right nodes).

10.19 version 2.2.8:
∙ Bug 4159: remove unneeded Dump print from oarstat.

∙ Bug 4158: replace XML::Simple module by XML::Dumper one.

∙ Bug fix for reservation (recalculate the right walltime).

∙ Print job dependencies in oarstat.

68

10.20 version 2.2.7:

10.21 version 2.2.11:
∙ Fix Debian package dependency on a CGI web server.

∙ Fix little bug: remove notification (scheduled start time) for Interac-
tive reservation.

∙ Fix bug in reservation: take care of the SCHEDULER_JOB_SECURITY_TIME
for reservations to check.

∙ Fix bug: add a lock around the section which creates and feed the
OAR cpuset.

∙ Taktuk command line API has changed (we need taktuk >= 3.6).

∙ Fix extra ’ in the name of output files when using a job name.

∙ Bug #4740: open the file in oarsub with user privileges (-S option)

∙ Bug #4787: check if the remote socket is defined (problem of timing
with nmap)

∙ Feature Request #4874: check system names when renaming prop-
erties

∙ DrawGantt can export charts to be reused to build a global multi-
OAR view (e.g. DrawGridGantt).

∙ Bug #4990: DrawGantt now uses the database localtime as its time
reference.

10.22 version 2.2.10:
∙ Job dependencies: if the required jobs do not have an exit code ==

0 and in the state Terminated then the schedulers refuse to schedule
this job.

∙ Add the possibility to disable the halt command on nodes with cm_availability
value.

∙ Enhance oarsub “-S” option (more #OAR parsed).

∙ Add the possibility to use oarsh without configuring the CPUSETs
(can be useful for users that don’t want to configure there ssh keys)

10.23 version 2.2.9:
∙ Bug 4225: Dump only 1 data structure when using -X or -Y or -D.

∙ Bug fix in Finishing sequence (Suspect right nodes).

10.24 version 2.2.8:
∙ Bug 4159: remove unneeded Dump print from oarstat.

∙ Bug 4158: replace XML::Simple module by XML::Dumper one.

∙ Bug fix for reservation (recalculate the right walltime).

∙ Print job dependencies in oarstat.

69

10.25 version 2.2.7:
∙ Bug 4106: fix oarsh and oarcp issue with some options (erroneous

leading space).

∙ Bug 4125: remove exit_code data when it is not relevant.

∙ Fix potential bug when changing asynchronously the state of the jobs
into “Terminated” or “Error”.

10.26 version 2.2.6:
∙ Bug fix: job types was not sent to cpuset manager script anymore.

(border effect from bug 4069 resolution)

10.27 version 2.2.5:
∙ Bug fix: remove user command when oar execute the epilogue script

on the nodes.

∙ Clean debug and mail messages format.

∙ Remove bad oarsub syntax from oarsub doc.

∙ Debug xauth path.

∙ bug 3995: set project correctly when resubmitting a job

∙ debug ’bash -c’ on Fedora

∙ bug 4069: reservations with CPUSET_ERROR (remove bad hosts
and continue with a right integrity in the database)

∙ bug 4044: fix free resources query for reservation (get the nearest
hole from the beginning of the reservation)

∙ bug 4013: now Dead, Suspected and Absent resources have different
colors in drawgantt with a popup on them.

10.28 version 2.2.4:
∙ Redirect third party commands into oar.log (easier to debug).

∙ Add user info into drawgantt interface.

∙ Some bug fixes.

10.29 version 2.2.3:
∙ Debug prologue and epilogue when oarexec receives a signal.

10.30 version 2.2.2:
∙ Switch nice value of the user processes into 0 in oarsh_shell (in case

of sshd was launched with a different priority).

∙ debug taktuk zombies in pingchecker and oar_Tools

70

10.31 version 2.2.1:
∙ install the “allow_clasic_ssh” feature by default

∙ debug DB installer

10.32 version 2.2:
∙ oar_server_proepilogue.pl: can be used for server prologue and epi-

logue to authorize users to access to nodes that are completely al-
located by OAR. If the whole node is assigned then it kills all jobs
from the user if all cpus are assigned.

∙ the same thing can be done with cpuset_manager_PAM.pl as the
script used to configure the cpuset. More efficent if cpusets are con-
figured.

∙ debug cm_availability feature to switch on and off nodes automati-
cally depending on waiting jobs.

∙ reservations now take care of cm_availability field

10.33 version 2.1.0:
∙ add “oarcp” command to help the users to copy files using oarsh.

∙ add sudo configuration to deal with bash. Now oarsub and oarsh have
the same behaviour as ssh (the bash configuration files are loaded
correctly)

∙ bug fix in drawgantt (loose jobs after submission of a moldable one)

∙ add SCHEDULER_RESOURCES_ALWAYS_ASSIGNED_TYPE into
oar.conf. Thus admin can add some resources for each jobs (like
frontale node)

∙ add possibility to use taktuk to check the aliveness of the nodes

∙ %jobid% is now replaced in stdout and stderr file names by the ef-
fective job id

∙ change interface to shu down or wake up nodes automatically (now
the node list is read on STDIN)

∙ add OARSUB_FORCE_JOB_KEY in oar.conf. It says to create a
job ssh key by default for each job.

∙ %jobid% is now replaced in the ssh job key name (oarsub -k ...).

∙ add NODE_FILE_DB_FIELD_DISTINCT_VALUES in oar.conf that
enables the admin to configure the generated containt of the OAR_NODE_FILE

∙ change ssh job key oarsub options behaviour

∙ add options “--reinitialize” and “--delete-before” to the oaraccount-
ing command

∙ cpuset are now stored in /dev/cpuset/oar

∙ debian packaging: configure and launch a specific sshd for the user
oar

71

∙ use a file descriptor to send the node list --> able to handle a very
large amount of nodes

∙ every config files are now in /etc/oar/

∙ oardel can add a besteffort type to jobs and vis versa

10.34 version 2.0.2:
∙ add warnings and exit code to oarnodesetting when there is a bad

node name or resource number

∙ change package version

∙ change default behaviour for the cpuset_manager.pl (more portable)

∙ enable a user to use the same ssh key for several jobs (at his own
risk!)

∙ add node hostnames in oarstat -f

∙ add --accounting and -u options in oarstat

∙ bug fix on index fields in the database (syncro): bug 2020

∙ bug fix about server pro/epilogue: bug 2022

∙ change the default output of oarstat. Now it is usable: bug 1875

∙ remove keys in authorized_keys of oar (on the nodes) that do not
correspond to an active cpuset (clean after a reboot)

∙ reread oar.conf after each database connection tries

∙ add support for X11 forwarding in oarsub -I and -C

∙ debug mysql initialization script in debian package

∙ add a variable in oarsh for the default options of ssh to use (more
useful to change if the ssh version installed does not handle one of
these options)

∙ read oar.conf in oarsh (so admin can more easily change options in
this script)

∙ add support for X11 forwarding via oarsh

∙ change variable for oarsh: OARSH_JOB_ID --> OAR_JOB_ID

10.35 version 2.0.0:
∙ Now, with the ability to declare any type of resources like licences,

VLAN, IP range, computing resources must have the type default
and a network_address not null.

∙ Possibility to declare associated resources like licences, IP ranges, ...
and to reserve them like others.

∙ Now you can connect to your jobs (not only for reservations).

∙ Add “cosystem” job type (execute and do nothing for these jobs).

72

∙ New scheduler : “oar_sched_gantt_with_timesharing”. You can spec-
ify jobs with the type “timesharing” that indicates that this scheduler
can launch more than 1 job on a resource at a time. It is possible to
restrict this feature with words “user and name”. For example, ’-t
timesharing=user,name’ indicates that only a job from the same user
with the same name can be launched in the same time than it.

∙ Add PostGresSQL support. So there is a choice to make between
MySQL and PostgresSQL.

∙ New approach for the scheduling : administrators have to insert into
the databases descriptions about resources and not nodes. Resources
have a network address (physical node) and properties. For example,
if you have dual-processor, then you can create 2 different resources
with the same natwork address but with 2 different processor names.

∙ The scheduler can now handle resource properties in a hierarchical
manner. Thus, for example, you can do “oarsub -l /switch=1/cpu=5”
which submit a job on 5 processors on the same switch.

∙ Add a signal handler in oarexec and propagate this signal to the user
process.

∙ Support ’#OAR -p ...’ options in user script.

∙ Add in oar.conf:
– DB_BASE_PASSWD_RO : for security issues, it is possi-

ble to execute request with parts specified by users with a
read only account (like “-p” option).

– OARSUB_DEFAULT_RESOURCES : when nothing is spec-
ified with the oarsub command then OAR takes this default
resource description.

– OAREXEC_DEBUG_MODE : turn on or off debug mode
in oarexec (create /tmp/oar/oar.log on nodes).

– FINAUD_FREQUENCY : indicates the frequency when OAR
launchs Finaud (search dead nodes).

– SCHEDULER_TIMEOUT : indicates to the scheduler the
amount of time after what it must end itself.

– SCHEDULER_JOB_SECURITY_TIME : time between each
job.

– DEAD_SWITCH_TIME : after this time Absent and Sus-
pected resources are turned on the Dead state.

– PROLOGUE_EPILOGUE_TIMEOUT : the possibility to
specify a different timeout for prologue and epilogue (PRO-
LOGUE_EPILOGUE_TIMEOUT).

– PROLOGUE_EXEC_FILE : you can specify the path of the
prologue script executed on nodes.

– EPILOGUE_EXEC_FILE : you can specify the path of the
epilogue script executed on nodes.

– GENERIC_COMMAND : a specific script may be used in-
stead of ping to check aliveness of nodes. The script must
return bad nodes on STDERR (1 line for a bad node and

73

it must have exactly the same name that OAR has given in
argument of the command).

– JOBDEL_SOFTWALLTIME : time after a normal frag that
the system waits to retry to frag the job.

– JOBDEL_WALLTIME : time after a normal frag that the
system waits before to delete the job arbitrary and suspects
nodes.

– LOG_FILE : specify the path of OAR log file (default :
/var/log/oar.log).

∙ Add wait() in pingchecker to avoid zombies.

∙ Better code modularization.

∙ Remove node install part to launch jobs. So it is easier to upgrade
from one version to an other (oarnodesetting must already be in-
stalled on each nodes if we want to use it).

∙ Users can specify a method to be notified (mail or script).

∙ Add cpuset support

∙ Add prologue and epilogue script to be executed on the OAR server
before and after launching a job.

∙ Add dependancy support between jobs (“-a” option in oarsub).

∙ In oarsub you can specify the launching directory (“-d” option).

∙ In oarsub you can specify a job name (“-n” option).

∙ In oarsub you can specify stdout and stderr file names.

∙ User can resubmit a job (option “--resubmit” in oarsub).

∙ It is possible to specify a read only database account and it will be
used to evaluate SQL properties given by the user with the oarsub
command (more scecure).

∙ Add possibility to order assigned resources with their properties by
the scheduler. So you can privilege some resources than others (SCHED-
ULER_RESOURCE_ORDER tag in oar.conf file)

∙ a command can be specified to switch off idle nodes (SCHEDULER_NODE_MANAGER_SLEEP_CMD,
SCHEDULER_NODE_MANAGER_IDLE_TIME, SCHEDULER_NODE_MANAGER_SLEEP_TIME
in oar.conf)

∙ a command can be specified to switch on nodes in the Absent state
according to the resource property cm_availability in the table re-
sources (SCHEDULER_NODE_MANAGER_WAKE_UP_CMD in
oar.conf).

∙ if a job goes in Error state and this is not its fault then OAR will
resubmit this one.

74

	Table of Contents
	1 OAR capabilities
	2 Installing the OAR batch system
	2.1 Requirements
	2.2 Configuration of the cluster
	2.3 CPUSET installation
	2.3.1 What are ``oarsh'' and ``oarsh_shell'' scripts ?
	2.3.2 CPUSET definition
	2.3.3 OARSH
	2.3.4 OARSH_SHELL
	2.3.5 Important notes

	2.4 Using Taktuk
	2.5 Visualization tools installation
	2.6 Debian packages
	2.7 Starting
	2.8 Energy saving
	2.9 Further informations

	3 Security aspects in OAR
	4 Administrator commands
	4.1 oarproperty
	4.2 oarnodesetting
	4.3 oaradmin
	4.4 oarremoveresource
	4.5 oaraccounting
	4.6 oarnotify
	4.7 oarmonitor

	5 Database scheme
	5.1 accounting
	5.2 admission_rules
	5.3 event_logs
	5.4 event_log_hostnames
	5.5 files
	5.6 frag_jobs
	5.7 gantt_jobs_resources
	5.8 gantt_jobs_resources_visu
	5.9 gantt_jobs_predictions
	5.10 gantt_jobs_predictions_visu
	5.11 jobs
	5.12 job_dependencies
	5.13 moldable_job_descriptions
	5.14 job_resource_groups
	5.15 job_resource_descriptions
	5.16 job_state_logs
	5.17 job_types
	5.18 resources
	5.19 resource_logs
	5.20 assigned_resources
	5.21 queues
	5.22 challenges

	6 Configuration file
	7 Modules descriptions
	7.1 Almighty
	7.2 Sarko
	7.3 Judas
	7.4 Leon
	7.5 Runner
	7.6 NodeChangeState
	7.7 Scheduler
	7.7.1 oar_sched_gantt_with_timesharing
	7.7.2 oar_sched_gantt_with_timesharing_and_fairsharing

	7.8 Hulot

	8 Internal mechanisms
	8.1 Job execution
	8.2 Scheduling

	9 FAQ - ADMIN
	9.1 Release policy
	9.2 What means the error ``Bad configuration option: PermitLocalCommand'' when I am using oarsh?
	9.3 How to manage start/stop of the nodes?
	9.4 How can I manage scheduling queues?
	9.5 How can I handle licence tokens?
	9.6 How can I handle multiple clusters with one OAR?
	9.7 How to configure a more ecological cluster (or how to make some power consumption economies)?
	9.8 How to configure temporary UID for each job?
	9.9 How to enable jobs to connect to the frontales from the nodes using oarsh?
	9.10 A job remains in the ``Finishing'' state, what can I do?
	9.11 How can I write my own scheduler?
	9.12 What is the syntax of this documentation?

	10 OAR CHANGELOG
	10.1 next version
	10.2 version 2.4.7:
	10.3 version 2.4.6:
	10.4 version 2.4.5:
	10.5 version 2.4.4:
	10.6 version 2.4.3:
	10.7 version 2.4.2:
	10.8 version 2.4.1:
	10.9 version 2.4.0:
	10.10 version 2.3.5:
	10.11 version 2.3.4:
	10.12 version 2.3.3:
	10.13 version 2.3.2:
	10.14 version 2.3.1:
	10.15 version 2.2.12:
	10.16 version 2.2.11:
	10.17 version 2.2.10:
	10.18 version 2.2.9:
	10.19 version 2.2.8:
	10.20 version 2.2.7:
	10.21 version 2.2.11:
	10.22 version 2.2.10:
	10.23 version 2.2.9:
	10.24 version 2.2.8:
	10.25 version 2.2.7:
	10.26 version 2.2.6:
	10.27 version 2.2.5:
	10.28 version 2.2.4:
	10.29 version 2.2.3:
	10.30 version 2.2.2:
	10.31 version 2.2.1:
	10.32 version 2.2:
	10.33 version 2.1.0:
	10.34 version 2.0.2:
	10.35 version 2.0.0:

