====== Use cases ====== ===== OpenMPI + affinity ===== We saw that the Linux kernel seems to be incapable of using correctly all the CPUs from the cpusets. Indeed, reserving 2 out of 8 cores on a node and running a code that uses 2 process, these 2 process where not well assigned to each cpu. We had to give the CPU MAP to OpenMPI to do cpu_affinity: i=0 ; oarprint core -P host,cpuset -F "% slot=%" | while read line ; do echo "rank $i=$line"; ((i++)); done > affinity.txt [user@node12 tmp]$ mpirun -np 8 --mca btl openib,self -v -display-allocation -display-map --machinefile $OAR_NODEFILE -rf affinity.txt /home/user/espresso-4.0.4/PW/pw.x < BeO_100.inp ===== NUMA topology optimization ===== In this use case, we've got a numa host (an Altix 450) having a "squared" topology: nodes are interconnected by routers like in this view: {{:wiki:lfi_topology.png?nolink&300|}} In yellow, "routers", in magenta, "nodes" (2 dual-core processors per node) Routers interconnect IRUS (chassis) on which the nodes are plugged (4 or 5 nodes per IRU). What we want is that for jobs that can enter into 2 IRUS or less, minimize the distance between the resources (ie use IRUS that have only one router interconnexion between them). The topology may be siplified as follows: {{:wiki:lfi_topology_square.png?nolink&300|}} The idea is to use moldable jobs and an admission rule that converts automatically the user requests to a moldable job. This job uses 2 resource properties: **numa_x** and **numa_y** that may be analogue to the square coordinates. What we want in fact, is the job that ends the soonest between a job running on an X or on a Y coordinate (we only want vertical or horizontal placed jobs). The numa_x and numa_y properties are set up this way (pnode is a property corresponding to physical nodes): {|border="1" !pnode !iru !numa_x !numa_y |- |itanium1 |1 |0 |1 |- |itanium2 |1 |0 |1 |- |itanium3 |1 |0 |1 |- |itanium4 |1 |0 |1 |- |itanium5 |2 |1 |1 |- |itanium6 |2 |1 |1 |- |itanium7 |2 |1 |1 |- |itanium8 |2 |1 |1 |- |itanium9 |2 |1 |1 |- |itanium10 |3 |0 |0 |- |itanium11 |3 |0 |0 |- |itanium12 |3 |0 |0 |- |itanium13 |3 |0 |0 |- |itanium14 |3 |0 |0 |- |itanium15 |4 |1 |0 |- |itanium16 |4 |1 |0 |- |itanium17 |4 |1 |0 |- |itanium18 |4 |1 |0 |} For example, the following requested ressources: -l /core=16 will result into: -l /numa_x=1/pnode=4/cpu=2/core=2 -l /numa_y=1/pnode=4/cpu=2/core=2 Here is the admission rule making that optimization: # Title : Numa optimization # Description : Creates a moldable job to take into account the "squared" topology of an Altix 450 my $n_core_per_cpus=2; my $n_cpu_per_pnode=2; if (grep(/^itanium$/, @{$type_list}) && (grep(/^manual$/, @{$type_list}) == "") && $#$ref_resource_list == 0){ print "[ADMINSSION RULE] Optimizing for numa architecture (use \\"-t manual\\" to disable)"; my $resources_def=$ref_resource_list->[0]; my $core=0; my $cpu=0; my $pnode=0; foreach my $r (@{$resources_def->[0]}) { foreach my $resource (@{$r->{resources}}) { if ($resource->{resource} eq "core") {$core=$resource->{value};} if ($resource->{resource} eq "cpu") {$cpu=$resource->{value};} if ($resource->{resource} eq "pnode") {$pnode=$resource->{value};} } } # Now, calculate the number of total cores my $n_cores=0; if ($pnode == 0 && $cpu != 0 && $core == 0) { $n_cores = $cpu*$n_core_per_cpus; } elsif ($pnode != 0 && $cpu == 0 && $core == 0) { $n_cores = $pnode*$n_cpu_per_pnode*$n_core_per_cpus; } elsif ($pnode != 0 && $cpu == 0 && $core != 0) { $n_cores = $pnode*$core; } elsif ($pnode == 0 && $cpu != 0 && $core != 0) { $n_cores = $cpu*$core; } elsif ($pnode == 0 && $cpu == 0 && $core != 0) { $n_cores = $core; } else { $n_cores = $pnode*$cpu*$core; } print "[ADMINSSION RULE] You requested $n_cores cores\"; if ($n_cores > 32) { print "[ADMISSION RULE] Big job (>32 cores), no optimization is possible"; }else{ print "[ADMISSION RULE] Optimization produces: /numa_x=1/$pnode/$cpu/$core /numa_y=1/$pnode/$cpu/$core"; my @newarray=eval(Dumper(@{$ref_resource_list}->[0])); push (@{$ref_resource_list},@newarray); unshift(@{%{@{@{@{$ref_resource_list}->[0]}->[0]}->[0]}->{resources}},{'resource' => 'numa_x','value' => '1'}); unshift(@{%{@{@{@{$ref_resource_list}->[1]}->[0]}->[0]}->{resources}},{'resource' => 'numa_y','value' => '1'}); } } ====== Users tips ====== ===== oarsh completion ===== //Tip based on an idea from Jerome Reybert// In order to complete nodes names in a oarsh command, add these lines in your .bashrc function _oarsh_complete_() { if [ -n "$OAR_NODEFILE" -a "$COMP_CWORD" -eq 1 ]; then local word=${comp_words[comp_cword]} local list=$(cat $OAR_NODEFILE | uniq | tr '\n' ' ') COMPREPLY=($(compgen -W "$list" -- "${word}")) fi } complete -o default -F _oarsh_complete_ oarsh Then try oarsh ===== OAR aware shell prompt for Interactive jobs ===== If you want to have a bash prompt with your job id and the remaining walltime then you can add in your ~/.bashrc: if [ "$PS1" ]; then __oar_ps1_remaining_time(){ if [ -n "$OAR_JOB_WALLTIME_SECONDS" -a -n "$OAR_NODE_FILE" -a -r "$OAR_NODE_FILE" ]; then DATE_NOW=$(date +%s) DATE_JOB_START=$(stat -c %Y $OAR_NODE_FILE) DATE_TMP=$OAR_JOB_WALLTIME_SECONDS ((DATE_TMP = (DATE_TMP - DATE_NOW + DATE_JOB_START) / 60)) echo -n "$DATE_TMP" fi } PS1='[\u@\h|\W]$([ -n "$OAR_NODE_FILE" ] && echo -n "(\[\e[1;32m\]$OAR_JOB_ID\[\e[0m\]-->\[\e[1;34m\]$(__oar_ps1_remaining_time)mn\[\e[0m\])")\$ ' if [ -n "$OAR_NODE_FILE" ]; then echo "[OAR] OAR_JOB_ID=$OAR_JOB_ID" echo "[OAR] Your nodes are:" sort $OAR_NODE_FILE | uniq -c | awk '{printf(" %s*%d", $2, $1)}END{printf("\n")}' | sed -e 's/,$//' fi fi Then the prompt inside an Interactive job will be like: [capitn@node006~](3101-->29mn)$ ===== Many small jobs grouping ===== Many small jobs of a few seconds may be painful for the OAR system. OAR may spend more time scheduling, allocating and launching than the actual computation time for each job. Gabriel Moreau developed a script that may be useful when you have a large set of small jobs. It groups you jobs into a unique bigger OAR job: * http://servforge.legi.grenoble-inp.fr/pub/soft-trokata/oarutils/oar-parexec.html You can download it from this page: * http://servforge.legi.grenoble-inp.fr/projects/soft-trokata/wiki/SoftWare/OarUtils For a more generic approach you can use Cigri, a grid middleware running onto OAR cluster(s) that is able to automatically group parametric jobs. Cigri is currently in a re-writing process and a new public release is planned for the end of 2012. Please contact Bruno.Bzeznik@imag.fr for more informations. ===== Overcoming quoting issues n oarsub commands ===== One may get a bit of a weird behavior when trying to submit a series of jobs through a bash script. For instance: #!/bin/bash for d in ../test/*/ ; do CMD="oarsub -p \"cputype='xeon'\" -l /nodes=1,walltime=04:00:00 -S \"./myscript.sh $d/in $d/out\"" echo $CMD $CMD done This does not work, due to quoting issues. A solution is to use a bash arrays to define the command, as follows: #!/bin/bash for d in ../test/*/ ; do declare -a CMD CMD=(oarsub -p "cputype='xeon'" -l /nodes=1,walltime=04:00:00 -S "./myscript.sh $d/in $d/out") "${CMD[@]}" done This works. ===== Environment variables through oarsh ===== * http://servforge.legi.grenoble-inp.fr/pub/soft-trokata/oarutils/oar-envsh.html * http://servforge.legi.grenoble-inp.fr/projects/soft-trokata/wiki/SoftWare/OarUtils